Header logo is


2018


Thumb xl screenshot 2018 5 9 swimming back and forth using planar flagellar propulsion at low reynolds numbers   khalil   2018   adv ...
Swimming Back and Forth Using Planar Flagellar Propulsion at Low Reynolds Numbers

Khalil, I. S. M., Tabak, A. F., Hamed, Y., Mitwally, M. E., Tawakol, M., Klingner, A., Sitti, M.

Advanced Science, 5(2):1700461, 2018 (article)

Abstract
Abstract Peritrichously flagellated Escherichia coli swim back and forth by wrapping their flagella together in a helical bundle. However, other monotrichous bacteria cannot swim back and forth with a single flagellum and planar wave propagation. Quantifying this observation, a magnetically driven soft two‐tailed microrobot capable of reversing its swimming direction without making a U‐turn trajectory or actively modifying the direction of wave propagation is designed and developed. The microrobot contains magnetic microparticles within the polymer matrix of its head and consists of two collinear, unequal, and opposite ultrathin tails. It is driven and steered using a uniform magnetic field along the direction of motion with a sinusoidally varying orthogonal component. Distinct reversal frequencies that enable selective and independent excitation of the first or the second tail of the microrobot based on their tail length ratio are found. While the first tail provides a propulsive force below one of the reversal frequencies, the second is almost passive, and the net propulsive force achieves flagellated motion along one direction. On the other hand, the second tail achieves flagellated propulsion along the opposite direction above the reversal frequency.

pi

link (url) DOI [BibTex]

2018


link (url) DOI [BibTex]


Thumb xl imgidx 00326
Customized Multi-Person Tracker

Ma, L., Tang, S., Black, M. J., Gool, L. V.

In Computer Vision – ACCV 2018, Springer International Publishing, Asian Conference on Computer Vision, December 2018 (inproceedings)

ps

PDF Project Page [BibTex]

PDF Project Page [BibTex]


no image
Reducing 3D Vibrations to 1D in Real Time

Park, G., Kuchenbecker, K. J.

Hands-on demonstration (4 pages) presented at AsiaHaptics, Incheon, South Korea, November 2018 (misc)

Abstract
For simple and realistic vibrotactile feedback, 3D accelerations from real contact interactions are usually rendered using a single-axis vibration actuator; this dimensional reduction can be performed in many ways. This demonstration implements a real-time conversion system that simultaneously measures 3D accelerations and renders corresponding 1D vibrations using a two-pen interface. In the demonstration, a user freely interacts with various objects using an In-Pen that contains a 3-axis accelerometer. The captured accelerations are converted to a single-axis signal, and an Out-Pen renders the reduced signal for the user to feel. We prepared seven conversion methods from the simple use of a single-axis signal to applying principal component analysis (PCA) so that users can compare the performance of each conversion method in this demonstration.

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl dip final
Deep Inertial Poser: Learning to Reconstruct Human Pose from Sparse Inertial Measurements in Real Time

Huang, Y., Kaufmann, M., Aksan, E., Black, M. J., Hilliges, O., Pons-Moll, G.

ACM Transactions on Graphics, (Proc. SIGGRAPH Asia), 37, pages: 185:1-185:15, ACM, November 2018, Two first authors contributed equally (article)

Abstract
We demonstrate a novel deep neural network capable of reconstructing human full body pose in real-time from 6 Inertial Measurement Units (IMUs) worn on the user's body. In doing so, we address several difficult challenges. First, the problem is severely under-constrained as multiple pose parameters produce the same IMU orientations. Second, capturing IMU data in conjunction with ground-truth poses is expensive and difficult to do in many target application scenarios (e.g., outdoors). Third, modeling temporal dependencies through non-linear optimization has proven effective in prior work but makes real-time prediction infeasible. To address this important limitation, we learn the temporal pose priors using deep learning. To learn from sufficient data, we synthesize IMU data from motion capture datasets. A bi-directional RNN architecture leverages past and future information that is available at training time. At test time, we deploy the network in a sliding window fashion, retaining real time capabilities. To evaluate our method, we recorded DIP-IMU, a dataset consisting of 10 subjects wearing 17 IMUs for validation in 64 sequences with 330,000 time instants; this constitutes the largest IMU dataset publicly available. We quantitatively evaluate our approach on multiple datasets and show results from a real-time implementation. DIP-IMU and the code are available for research purposes.

ps

data code pdf preprint video DOI Project Page [BibTex]

data code pdf preprint video DOI Project Page [BibTex]


Thumb xl representative image2
A Large-Scale Fabric-Based Tactile Sensor Using Electrical Resistance Tomography

Lee, H., Park, K., Kim, J., Kuchenbecker, K. J.

Hands-on demonstration (3 pages) presented at AsiaHaptics, Incheon, South Korea, November 2018 (misc)

Abstract
Large-scale tactile sensing is important for household robots and human-robot interaction because contacts can occur all over a robot’s body surface. This paper presents a new fabric-based tactile sensor that is straightforward to manufacture and can cover a large area. The tactile sensor is made of conductive and non-conductive fabric layers, and the electrodes are stitched with conductive thread, so the resulting device is flexible and stretchable. The sensor utilizes internal array electrodes and a reconstruction method called electrical resistance tomography (ERT) to achieve a high spatial resolution with a small number of electrodes. The developed sensor shows that only 16 electrodes can accurately estimate single and multiple contacts over a square that measures 20 cm by 20 cm.

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl universal custom complex magnetic spring design methodology
Universal Custom Complex Magnetic Spring Design Methodology

Woodward, M. A., Sitti, M.

IEEE Transactions on Magnetics, 54(1):1-13, October 2018 (article)

Abstract
A design methodology is presented for creating custom complex magnetic springs through the design of force-displacement curves. This methodology results in a magnet configuration, which will produce a desired force-displacement relationship. Initially, the problem is formulated and solved as a system of linear equations. Then, given the limited likelihood of a single solution being feasibly manufactured, key parameters of the solution are extracted and varied to create a family of solutions. Finally, these solutions are refined using numerical optimization. Given the properties of magnets, this methodology can create any well-defined function of force versus displacement and is model-independent. To demonstrate this flexibility, a number of example magnetic springs are designed; one of which, designed for use in a jumping-gliding robot's shape memory alloy actuated clutch, is manufactured and experimentally characterized. Due to the scaling of magnetic forces, the displacement region which these magnetic springs are most applicable is that of millimeters and below. However, this region is well situated for miniature robots and smart material actuators, where a tailored magnetic spring, designed to compliment a component, can enhance its performance while adding new functionality. The methodology is also expendable to variable interactions and multi-dimensional magnetic field design.

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl sevillagcpr
On the Integration of Optical Flow and Action Recognition

Sevilla-Lara, L., Liao, Y., Güney, F., Jampani, V., Geiger, A., Black, M. J.

In German Conference on Pattern Recognition (GCPR), LNCS 11269, pages: 281-297, Springer, Cham, October 2018 (inproceedings)

Abstract
Most of the top performing action recognition methods use optical flow as a "black box" input. Here we take a deeper look at the combination of flow and action recognition, and investigate why optical flow is helpful, what makes a flow method good for action recognition, and how we can make it better. In particular, we investigate the impact of different flow algorithms and input transformations to better understand how these affect a state-of-the-art action recognition method. Furthermore, we fine tune two neural-network flow methods end-to-end on the most widely used action recognition dataset (UCF101). Based on these experiments, we make the following five observations: 1) optical flow is useful for action recognition because it is invariant to appearance, 2) optical flow methods are optimized to minimize end-point-error (EPE), but the EPE of current methods is not well correlated with action recognition performance, 3) for the flow methods tested, accuracy at boundaries and at small displacements is most correlated with action recognition performance, 4) training optical flow to minimize classification error instead of minimizing EPE improves recognition performance, and 5) optical flow learned for the task of action recognition differs from traditional optical flow especially inside the human body and at the boundary of the body. These observations may encourage optical flow researchers to look beyond EPE as a goal and guide action recognition researchers to seek better motion cues, leading to a tighter integration of the optical flow and action recognition communities.

avg ps

arXiv DOI [BibTex]

arXiv DOI [BibTex]


Thumb xl cover
Deep Neural Network-based Cooperative Visual Tracking through Multiple Micro Aerial Vehicles

Price, E., Lawless, G., Ludwig, R., Martinovic, I., Buelthoff, H. H., Black, M. J., Ahmad, A.

IEEE Robotics and Automation Letters, Robotics and Automation Letters, 3(4):3193-3200, IEEE, October 2018, Also accepted and presented in the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). (article)

Abstract
Multi-camera tracking of humans and animals in outdoor environments is a relevant and challenging problem. Our approach to it involves a team of cooperating micro aerial vehicles (MAVs) with on-board cameras only. DNNs often fail at objects with small scale or far away from the camera, which are typical characteristics of a scenario with aerial robots. Thus, the core problem addressed in this paper is how to achieve on-board, online, continuous and accurate vision-based detections using DNNs for visual person tracking through MAVs. Our solution leverages cooperation among multiple MAVs and active selection of most informative regions of image. We demonstrate the efficiency of our approach through simulations with up to 16 robots and real robot experiments involving two aerial robots tracking a person, while maintaining an active perception-driven formation. ROS-based source code is provided for the benefit of the community.

ps

Published Version link (url) DOI [BibTex]

Published Version link (url) DOI [BibTex]


Thumb xl interpolation
Temporal Interpolation as an Unsupervised Pretraining Task for Optical Flow Estimation

Wulff, J., Black, M. J.

In German Conference on Pattern Recognition (GCPR), LNCS 11269, pages: 567-582, Springer, Cham, October 2018 (inproceedings)

Abstract
The difficulty of annotating training data is a major obstacle to using CNNs for low-level tasks in video. Synthetic data often does not generalize to real videos, while unsupervised methods require heuristic n losses. Proxy tasks can overcome these issues, and start by training a network for a task for which annotation is easier or which can be trained unsupervised. The trained network is then fine-tuned for the original task using small amounts of ground truth data. Here, we investigate frame interpolation as a proxy task for optical flow. Using real movies, we train a CNN unsupervised for temporal interpolation. Such a network implicitly estimates motion, but cannot handle untextured regions. By fi ne-tuning on small amounts of ground truth flow, the network can learn to fill in homogeneous regions and compute full optical flow fi elds. Using this unsupervised pre-training, our network outperforms similar architectures that were trained supervised using synthetic optical flow.

ps

pdf arXiv DOI Project Page [BibTex]

pdf arXiv DOI Project Page [BibTex]


Thumb xl huggiebot
Softness, Warmth, and Responsiveness Improve Robot Hugs

Block, A. E., Kuchenbecker, K. J.

International Journal of Social Robotics, 11(1):49-64, October 2018 (article)

Abstract
Hugs are one of the first forms of contact and affection humans experience. Due to their prevalence and health benefits, roboticists are naturally interested in having robots one day hug humans as seamlessly as humans hug other humans. This project's purpose is to evaluate human responses to different robot physical characteristics and hugging behaviors. Specifically, we aim to test the hypothesis that a soft, warm, touch-sensitive PR2 humanoid robot can provide humans with satisfying hugs by matching both their hugging pressure and their hugging duration. Thirty relatively young and rather technical participants experienced and evaluated twelve hugs with the robot, divided into three randomly ordered trials that focused on physical robot characteristics (single factor, three levels) and nine randomly ordered trials with low, medium, and high hug pressure and duration (two factors, three levels each). Analysis of the results showed that people significantly prefer soft, warm hugs over hard, cold hugs. Furthermore, users prefer hugs that physically squeeze them and release immediately when they are ready for the hug to end. Taking part in the experiment also significantly increased positive user opinions of robots and robot use.

hi

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Thumb xl alice
First Impressions of Personality Traits From Body Shapes

Hu, Y., Parde, C. J., Hill, M. Q., Mahmood, N., O’Toole, A. J.

Psychological Science, 29(12):1969-–1983, October 2018 (article)

Abstract
People infer the personalities of others from their facial appearance. Whether they do so from body shapes is less studied. We explored personality inferences made from body shapes. Participants rated personality traits for male and female bodies generated with a three-dimensional body model. Multivariate spaces created from these ratings indicated that people evaluate bodies on valence and agency in ways that directly contrast positive and negative traits from the Big Five domains. Body-trait stereotypes based on the trait ratings revealed a myriad of diverse body shapes that typify individual traits. Personality-trait profiles were predicted reliably from a subset of the body-shape features used to specify the three-dimensional bodies. Body features related to extraversion and conscientiousness were predicted with the highest consensus, followed by openness traits. This study provides the first comprehensive look at the range, diversity, and reliability of personality inferences that people make from body shapes.

ps

publisher site pdf DOI [BibTex]

publisher site pdf DOI [BibTex]


Thumb xl bmvc pic
Human Motion Parsing by Hierarchical Dynamic Clustering

Zhang, Y., Tang, S., Sun, H., Neumann, H.

In Proceedings of the British Machine Vision Conference (BMVC), pages: 269, BMVA Press, 29th British Machine Vision Conference, September 2018 (inproceedings)

Abstract
Parsing continuous human motion into meaningful segments plays an essential role in various applications. In this work, we propose a hierarchical dynamic clustering framework to derive action clusters from a sequence of local features in an unsuper- vised bottom-up manner. We systematically investigate the modules in this framework and particularly propose diverse temporal pooling schemes, in order to realize accurate temporal action localization. We demonstrate our method on two motion parsing tasks: temporal action segmentation and abnormal behavior detection. The experimental results indicate that the proposed framework is significantly more effective than the other related state-of-the-art methods on several datasets.

ps

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Thumb xl coma faces
Generating 3D Faces using Convolutional Mesh Autoencoders

Ranjan, A., Bolkart, T., Sanyal, S., Black, M. J.

In European Conference on Computer Vision (ECCV), Lecture Notes in Computer Science, vol 11207, pages: 725-741, Springer, Cham, September 2018 (inproceedings)

Abstract
Learned 3D representations of human faces are useful for computer vision problems such as 3D face tracking and reconstruction from images, as well as graphics applications such as character generation and animation. Traditional models learn a latent representation of a face using linear subspaces or higher-order tensor generalizations. Due to this linearity, they can not capture extreme deformations and non-linear expressions. To address this, we introduce a versatile model that learns a non-linear representation of a face using spectral convolutions on a mesh surface. We introduce mesh sampling operations that enable a hierarchical mesh representation that captures non-linear variations in shape and expression at multiple scales within the model. In a variational setting, our model samples diverse realistic 3D faces from a multivariate Gaussian distribution. Our training data consists of 20,466 meshes of extreme expressions captured over 12 different subjects. Despite limited training data, our trained model outperforms state-of-the-art face models with 50% lower reconstruction error, while using 75% fewer parameters. We also show that, replacing the expression space of an existing state-of-the-art face model with our autoencoder, achieves a lower reconstruction error. Our data, model and code are available at http://coma.is.tue.mpg.de/.

ps

Code (tensorflow) Code (pytorch) Project Page paper supplementary DOI Project Page Project Page [BibTex]

Code (tensorflow) Code (pytorch) Project Page paper supplementary DOI Project Page Project Page [BibTex]


Thumb xl person reid.001
Part-Aligned Bilinear Representations for Person Re-identification

Suh, Y., Wang, J., Tang, S., Mei, T., Lee, K. M.

In European Conference on Computer Vision (ECCV), 11218, pages: 418-437, Springer, Cham, September 2018 (inproceedings)

Abstract
Comparing the appearance of corresponding body parts is essential for person re-identification. However, body parts are frequently misaligned be- tween detected boxes, due to the detection errors and the pose/viewpoint changes. In this paper, we propose a network that learns a part-aligned representation for person re-identification. Our model consists of a two-stream network, which gen- erates appearance and body part feature maps respectively, and a bilinear-pooling layer that fuses two feature maps to an image descriptor. We show that it results in a compact descriptor, where the inner product between two image descriptors is equivalent to an aggregation of the local appearance similarities of the cor- responding body parts, and thereby significantly reduces the part misalignment problem. Our approach is advantageous over other pose-guided representations by learning part descriptors optimal for person re-identification. Training the net- work does not require any part annotation on the person re-identification dataset. Instead, we simply initialize the part sub-stream using a pre-trained sub-network of an existing pose estimation network and train the whole network to minimize the re-identification loss. We validate the effectiveness of our approach by demon- strating its superiority over the state-of-the-art methods on the standard bench- mark datasets including Market-1501, CUHK03, CUHK01 and DukeMTMC, and standard video dataset MARS.

ps

pdf supplementary DOI Project Page [BibTex]

pdf supplementary DOI Project Page [BibTex]


Thumb xl persondetect  copy
Learning Human Optical Flow

Ranjan, A., Romero, J., Black, M. J.

In 29th British Machine Vision Conference, September 2018 (inproceedings)

Abstract
The optical flow of humans is well known to be useful for the analysis of human action. Given this, we devise an optical flow algorithm specifically for human motion and show that it is superior to generic flow methods. Designing a method by hand is impractical, so we develop a new training database of image sequences with ground truth optical flow. For this we use a 3D model of the human body and motion capture data to synthesize realistic flow fields. We then train a convolutional neural network to estimate human flow fields from pairs of images. Since many applications in human motion analysis depend on speed, and we anticipate mobile applications, we base our method on SpyNet with several modifications. We demonstrate that our trained network is more accurate than a wide range of top methods on held-out test data and that it generalizes well to real image sequences. When combined with a person detector/tracker, the approach provides a full solution to the problem of 2D human flow estimation. Both the code and the dataset are available for research.

ps

video code pdf link (url) Project Page Project Page [BibTex]

video code pdf link (url) Project Page Project Page [BibTex]


Thumb xl nbf
Neural Body Fitting: Unifying Deep Learning and Model-Based Human Pose and Shape Estimation

(Best Student Paper Award)

Omran, M., Lassner, C., Pons-Moll, G., Gehler, P. V., Schiele, B.

In 3DV, September 2018 (inproceedings)

Abstract
Direct prediction of 3D body pose and shape remains a challenge even for highly parameterized deep learning models. Mapping from the 2D image space to the prediction space is difficult: perspective ambiguities make the loss function noisy and training data is scarce. In this paper, we propose a novel approach (Neural Body Fitting (NBF)). It integrates a statistical body model within a CNN, leveraging reliable bottom-up semantic body part segmentation and robust top-down body model constraints. NBF is fully differentiable and can be trained using 2D and 3D annotations. In detailed experiments, we analyze how the components of our model affect performance, especially the use of part segmentations as an explicit intermediate representation, and present a robust, efficiently trainable framework for 3D human pose estimation from 2D images with competitive results on standard benchmarks. Code is available at https://github.com/mohomran/neural_body_fitting

ps

arXiv code Project Page [BibTex]


Thumb xl joeleccv18
Unsupervised Learning of Multi-Frame Optical Flow with Occlusions

Janai, J., Güney, F., Ranjan, A., Black, M. J., Geiger, A.

In European Conference on Computer Vision (ECCV), Lecture Notes in Computer Science, vol 11220, pages: 713-731, Springer, Cham, September 2018 (inproceedings)

avg ps

pdf suppmat Video Project Page DOI Project Page [BibTex]

pdf suppmat Video Project Page DOI Project Page [BibTex]


Thumb xl sample3 merge black
Learning an Infant Body Model from RGB-D Data for Accurate Full Body Motion Analysis

Hesse, N., Pujades, S., Romero, J., Black, M. J., Bodensteiner, C., Arens, M., Hofmann, U. G., Tacke, U., Hadders-Algra, M., Weinberger, R., Muller-Felber, W., Schroeder, A. S.

In Int. Conf. on Medical Image Computing and Computer Assisted Intervention (MICCAI), September 2018 (inproceedings)

Abstract
Infant motion analysis enables early detection of neurodevelopmental disorders like cerebral palsy (CP). Diagnosis, however, is challenging, requiring expert human judgement. An automated solution would be beneficial but requires the accurate capture of 3D full-body movements. To that end, we develop a non-intrusive, low-cost, lightweight acquisition system that captures the shape and motion of infants. Going beyond work on modeling adult body shape, we learn a 3D Skinned Multi-Infant Linear body model (SMIL) from noisy, low-quality, and incomplete RGB-D data. We demonstrate the capture of shape and motion with 37 infants in a clinical environment. Quantitative experiments show that SMIL faithfully represents the data and properly factorizes the shape and pose of the infants. With a case study based on general movement assessment (GMA), we demonstrate that SMIL captures enough information to allow medical assessment. SMIL provides a new tool and a step towards a fully automatic system for GMA.

ps

pdf Project page video extended arXiv version DOI Project Page [BibTex]

pdf Project page video extended arXiv version DOI Project Page [BibTex]


Thumb xl eccv pascal results  thumbnail
Deep Directional Statistics: Pose Estimation with Uncertainty Quantification

Prokudin, S., Gehler, P., Nowozin, S.

European Conference on Computer Vision (ECCV), September 2018 (conference)

Abstract
Modern deep learning systems successfully solve many perception tasks such as object pose estimation when the input image is of high quality. However, in challenging imaging conditions such as on low resolution images or when the image is corrupted by imaging artifacts, current systems degrade considerably in accuracy. While a loss in performance is unavoidable we would like our models to quantify their uncertainty in order to achieve robustness against images of varying quality. Probabilistic deep learning models combine the expressive power of deep learning with uncertainty quantification. In this paper, we propose a novel probabilistic deep learning model for the task of angular regression. Our model uses von Mises distributions to predict a distribution over object pose angle. Whereas a single von Mises distribution is making strong assumptions about the shape of the distribution, we extend the basic model to predict a mixture of von Mises distributions. We show how to learn a mixture model using a finite and infinite number of mixture components. Our model allow for likelihood-based training and efficient inference at test time. We demonstrate on a number of challenging pose estimation datasets that our model produces calibrated probability predictions and competitive or superior point estimates compared to the current state-of-the-art.

ps

code pdf [BibTex]

code pdf [BibTex]


Thumb xl vip
Recovering Accurate 3D Human Pose in The Wild Using IMUs and a Moving Camera

Marcard, T. V., Henschel, R., Black, M. J., Rosenhahn, B., Pons-Moll, G.

In European Conference on Computer Vision (ECCV), Lecture Notes in Computer Science, vol 11214, pages: 614-631, Springer, Cham, September 2018 (inproceedings)

Abstract
In this work, we propose a method that combines a single hand-held camera and a set of Inertial Measurement Units (IMUs) attached at the body limbs to estimate accurate 3D poses in the wild. This poses many new challenges: the moving camera, heading drift, cluttered background, occlusions and many people visible in the video. We associate 2D pose detections in each image to the corresponding IMU-equipped persons by solving a novel graph based optimization problem that forces 3D to 2D coherency within a frame and across long range frames. Given associations, we jointly optimize the pose of a statistical body model, the camera pose and heading drift using a continuous optimization framework. We validated our method on the TotalCapture dataset, which provides video and IMU synchronized with ground truth. We obtain an accuracy of 26mm, which makes it accurate enough to serve as a benchmark for image-based 3D pose estimation in the wild. Using our method, we recorded 3D Poses in the Wild (3DPW ), a new dataset consisting of more than 51; 000 frames with accurate 3D pose in challenging sequences, including walking in the city, going up-stairs, having co ffee or taking the bus. We make the reconstructed 3D poses, video, IMU and 3D models available for research purposes at http://virtualhumans.mpi-inf.mpg.de/3DPW.

ps

pdf SupMat data project DOI Project Page [BibTex]

pdf SupMat data project DOI Project Page [BibTex]


Thumb xl fict 05 00018 g003
Visual Perception and Evaluation of Photo-Realistic Self-Avatars From 3D Body Scans in Males and Females

Thaler, A., Piryankova, I., Stefanucci, J. K., Pujades, S., de la Rosa, S., Streuber, S., Romero, J., Black, M. J., Mohler, B. J.

Frontiers in ICT, 5, pages: 1-14, September 2018 (article)

Abstract
The creation or streaming of photo-realistic self-avatars is important for virtual reality applications that aim for perception and action to replicate real world experience. The appearance and recognition of a digital self-avatar may be especially important for applications related to telepresence, embodied virtual reality, or immersive games. We investigated gender differences in the use of visual cues (shape, texture) of a self-avatar for estimating body weight and evaluating avatar appearance. A full-body scanner was used to capture each participant's body geometry and color information and a set of 3D virtual avatars with realistic weight variations was created based on a statistical body model. Additionally, a second set of avatars was created with an average underlying body shape matched to each participant’s height and weight. In four sets of psychophysical experiments, the influence of visual cues on the accuracy of body weight estimation and the sensitivity to weight changes was assessed by manipulating body shape (own, average) and texture (own photo-realistic, checkerboard). The avatars were presented on a large-screen display, and participants responded to whether the avatar's weight corresponded to their own weight. Participants also adjusted the avatar's weight to their desired weight and evaluated the avatar's appearance with regard to similarity to their own body, uncanniness, and their willingness to accept it as a digital representation of the self. The results of the psychophysical experiments revealed no gender difference in the accuracy of estimating body weight in avatars. However, males accepted a larger weight range of the avatars as corresponding to their own. In terms of the ideal body weight, females but not males desired a thinner body. With regard to the evaluation of avatar appearance, the questionnaire responses suggest that own photo-realistic texture was more important to males for higher similarity ratings, while own body shape seemed to be more important to females. These results argue for gender-specific considerations when creating self-avatars.

ps

pdf DOI [BibTex]

pdf DOI [BibTex]


Thumb xl teaser ps hi
Statistical Modelling of Fingertip Deformations and Contact Forces during Tactile Interaction

Gueorguiev, D., Tzionas, D., Pacchierotti, C., Black, M. J., Kuchenbecker, K. J.

Extended abstract presented at the Hand, Brain and Technology conference (HBT), Ascona, Switzerland, August 2018 (misc)

Abstract
Little is known about the shape and properties of the human finger during haptic interaction, even though these are essential parameters for controlling wearable finger devices and deliver realistic tactile feedback. This study explores a framework for four-dimensional scanning (3D over time) and modelling of finger-surface interactions, aiming to capture the motion and deformations of the entire finger with high resolution while simultaneously recording the interfacial forces at the contact. Preliminary results show that when the fingertip is actively pressing a rigid surface, it undergoes lateral expansion and proximal/distal bending, deformations that cannot be captured by imaging of the contact area alone. Therefore, we are currently capturing a dataset that will enable us to create a statistical model of the finger’s deformations and predict the contact forces induced by tactile interaction with objects. This technique could improve current methods for tactile rendering in wearable haptic devices, which rely on general physical modelling of the skin’s compliance, by developing an accurate model of the variations in finger properties across the human population. The availability of such a model will also enable a more realistic simulation of virtual finger behaviour in virtual reality (VR) environments, as well as the ability to accurately model a specific user’s finger from lower resolution data. It may also be relevant for inferring the physical properties of the underlying tissue from observing the surface mesh deformations, as previously shown for body tissues.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Instrumentation, Data, and Algorithms for Visually Understanding Haptic Surface Properties

Burka, A. L.

University of Pennsylvania, Philadelphia, USA, August 2018, Department of Electrical and Systems Engineering (phdthesis)

Abstract
Autonomous robots need to efficiently walk over varied surfaces and grasp diverse objects. We hypothesize that the association between how such surfaces look and how they physically feel during contact can be learned from a database of matched haptic and visual data recorded from various end-effectors' interactions with hundreds of real-world surfaces. Testing this hypothesis required the creation of a new multimodal sensing apparatus, the collection of a large multimodal dataset, and development of a machine-learning pipeline. This thesis begins by describing the design and construction of the Portable Robotic Optical/Tactile ObservatioN PACKage (PROTONPACK, or Proton for short), an untethered handheld sensing device that emulates the capabilities of the human senses of vision and touch. Its sensory modalities include RGBD vision, egomotion, contact force, and contact vibration. Three interchangeable end-effectors (a steel tooling ball, an OptoForce three-axis force sensor, and a SynTouch BioTac artificial fingertip) allow for different material properties at the contact point and provide additional tactile data. We then detail the calibration process for the motion and force sensing systems, as well as several proof-of-concept surface discrimination experiments that demonstrate the reliability of the device and the utility of the data it collects. This thesis then presents a large-scale dataset of multimodal surface interaction recordings, including 357 unique surfaces such as furniture, fabrics, outdoor fixtures, and items from several private and public material sample collections. Each surface was touched with one, two, or three end-effectors, comprising approximately one minute per end-effector of tapping and dragging at various forces and speeds. We hope that the larger community of robotics researchers will find broad applications for the published dataset. Lastly, we demonstrate an algorithm that learns to estimate haptic surface properties given visual input. Surfaces were rated on hardness, roughness, stickiness, and temperature by the human experimenter and by a pool of purely visual observers. Then we trained an algorithm to perform the same task as well as infer quantitative properties calculated from the haptic data. Overall, the task of predicting haptic properties from vision alone proved difficult for both humans and computers, but a hybrid algorithm using a deep neural network and a support vector machine achieved a correlation between expected and actual regression output between approximately ρ = 0.3 and ρ = 0.5 on previously unseen surfaces.

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl aircap ca 3
Decentralized MPC based Obstacle Avoidance for Multi-Robot Target Tracking Scenarios

Tallamraju, R., Rajappa, S., Black, M. J., Karlapalem, K., Ahmad, A.

2018 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pages: 1-8, IEEE, August 2018 (conference)

Abstract
In this work, we consider the problem of decentralized multi-robot target tracking and obstacle avoidance in dynamic environments. Each robot executes a local motion planning algorithm which is based on model predictive control (MPC). The planner is designed as a quadratic program, subject to constraints on robot dynamics and obstacle avoidance. Repulsive potential field functions are employed to avoid obstacles. The novelty of our approach lies in embedding these non-linear potential field functions as constraints within a convex optimization framework. Our method convexifies nonconvex constraints and dependencies, by replacing them as pre-computed external input forces in robot dynamics. The proposed algorithm additionally incorporates different methods to avoid field local minima problems associated with using potential field functions in planning. The motion planner does not enforce predefined trajectories or any formation geometry on the robots and is a comprehensive solution for cooperative obstacle avoidance in the context of multi-robot target tracking. We perform simulation studies for different scenarios to showcase the convergence and efficacy of the proposed algorithm.

ps

Published Version link (url) DOI [BibTex]

Published Version link (url) DOI [BibTex]


Thumb xl teaser image
Programmable collective behavior in dynamically self-assembled mobile microrobotic swarms

B Yigit, , Y Alapan, , Sitti, M.

Advanced Science, July 2018 (article)

Abstract
Collective control of mobile microrobotic swarms is indispensable for their potential high-impact applications in targeted drug delivery, medical diagnostics, parallel micromanipulation, and environmental sensing and remediation. Lack of on-board computational and sensing capabilities in current microrobotic systems necessitates use of physical interactions among individual microrobots for local physical communication and cooperation. Here, we show that mobile microrobotic swarms with well-defined collective behavior can be designed by engineering magnetic interactions among individual units. Microrobots, consisting of a linear chain of self-assembled magnetic microparticles, locomote on surfaces in response to a precessing magnetic field. Control over the direction of precessing magnetic field allows engineering attractive and repulsive interactions among microrobots and, thus, collective order with well-defined spatial organization and parallel operation over macroscale distances (~ 1 cm). These microrobotic swarms can be guided through confined spaces, while preserving microrobot morphology and function. These swarms can further achieve directional transport of large cargoes on surfaces and small cargoes in bulk fluids. Described design approach, exploiting physical interactions among individual robots, enables facile and rapid formation of self-organized and reconfigurable microrobotic swarms with programmable collective order.

pi

link (url) [BibTex]


Thumb xl picture1
3D-Printed Biodegradable Microswimmer for Drug Delivery and Targeted Cell Labeling

Hakan Ceylan, , I. Ceren Yasa, , Oncay Yasa, , Ahmet Fatih Tabak, , Joshua Giltinan, , Sitti, M.

bioRxiv, pages: 379024, July 2018 (article)

Abstract
Miniaturization of interventional medical devices can leverage minimally invasive technologies by enabling operational resolution at cellular length scales with high precision and repeatability. Untethered micron-scale mobile robots can realize this by navigating and performing in hard-to-reach, confined and delicate inner body sites. However, such a complex task requires an integrated design and engineering strategy, where powering, control, environmental sensing, medical functionality and biodegradability need to be considered altogether. The present study reports a hydrogel-based, biodegradable microrobotic swimmer, which is responsive to the changes in its microenvironment for theranostic cargo delivery and release tasks. We design a double-helical magnetic microswimmer of 20 micrometers length, which is 3D-printed with complex geometrical and compositional features. At normal physiological concentrations, matrix metalloproteinase-2 (MMP-2) enzyme can entirely degrade the microswimmer body in 118 h to solubilized non-toxic products. The microswimmer can respond to the pathological concentrations of MMP-2 by swelling and thereby accelerating the release kinetics of the drug payload. Anti-ErbB 2 antibody-tagged magnetic nanoparticles released from the degraded microswimmers serve for targeted labeling of SKBR3 breast cancer cells to realize the potential of medical imaging of local tissue sites following the therapeutic intervention. These results represent a leap forward toward clinical medical microrobots that are capable of sensing, responding to the local pathological information, and performing specific therapeutic and diagnostic tasks as orderly executed operations using their smart composite material architectures.

pi

DOI Project Page [BibTex]


Thumb xl ar
Robust Visual Augmented Reality in Robot-Assisted Surgery

Forte, M. P.

Politecnico di Milano, Milan, Italy, July 2018, Department of Electronic, Information, and Biomedical Engineering (mastersthesis)

Abstract
The broader research objective of this line of research is to test the hypothesis that real-time stereo video analysis and augmented reality can increase safety and task efficiency in robot-assisted surgery. This master’s thesis aims to solve the first step needed to achieve this goal: the creation of a robust system that delivers the envisioned feedback to a surgeon while he or she controls a surgical robot that is identical to those used on human patients. Several approaches for applying augmented reality to da Vinci Surgical Systems have been proposed, but none of them entirely rely on a clinical robot; specifically, they require additional sensors, depend on access to the da Vinci API, are designed for a very specific task, or were tested on systems that are starkly different from those in clinical use. There has also been prior work that presents the real-world camera view and the computer graphics on separate screens, or not in real time. In other scenarios, the digital information is overlaid manually by the surgeons themselves or by computer scientists, rather than being generated automatically in response to the surgeon’s actions. We attempted to overcome the aforementioned constraints by acquiring input signals from the da Vinci stereo endoscope and providing augmented reality to the console in real time (less than 150 ms delay, including the 62 ms of inherent latency of the da Vinci). The potential benefits of the resulting system are broad because it was built to be general, rather than customized for any specific task. The entire platform is compatible with any generation of the da Vinci System and does not require a dVRK (da Vinci Research Kit) or access to the API. Thus, it can be applied to existing da Vinci Systems in operating rooms around the world.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Task-Driven PCA-Based Design Optimization of Wearable Cutaneous Devices

Pacchierotti, C., Young, E. M., Kuchenbecker, K. J.

IEEE Robotics and Automation Letters, 3(3):2214-2221, July 2018, Presented at ICRA 2018 (article)

Abstract
Small size and low weight are critical requirements for wearable and portable haptic interfaces, making it essential to work toward the optimization of their sensing and actuation systems. This paper presents a new approach for task-driven design optimization of fingertip cutaneous haptic devices. Given one (or more) target tactile interactions to render and a cutaneous device to optimize, we evaluate the minimum number and best configuration of the device’s actuators to minimize the estimated haptic rendering error. First, we calculate the motion needed for the original cutaneous device to render the considered target interaction. Then, we run a principal component analysis (PCA) to search for possible couplings between the original motor inputs, looking also for the best way to reconfigure them. If some couplings exist, we can re-design our cutaneous device with fewer motors, optimally configured to render the target tactile sensation. The proposed approach is quite general and can be applied to different tactile sensors and cutaneous devices. We validated it using a BioTac tactile sensor and custom plate-based 3-DoF and 6-DoF fingertip cutaneous devices, considering six representative target tactile interactions. The algorithm was able to find couplings between each device’s motor inputs, proving it to be a viable approach to optimize the design of wearable and portable cutaneous devices. Finally, we present two examples of optimized designs for our 3-DoF fingertip cutaneous device.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl mazen
Robust Physics-based Motion Retargeting with Realistic Body Shapes

Borno, M. A., Righetti, L., Black, M. J., Delp, S. L., Fiume, E., Romero, J.

Computer Graphics Forum, 37, pages: 6:1-12, July 2018 (article)

Abstract
Motion capture is often retargeted to new, and sometimes drastically different, characters. When the characters take on realistic human shapes, however, we become more sensitive to the motion looking right. This means adapting it to be consistent with the physical constraints imposed by different body shapes. We show how to take realistic 3D human shapes, approximate them using a simplified representation, and animate them so that they move realistically using physically-based retargeting. We develop a novel spacetime optimization approach that learns and robustly adapts physical controllers to new bodies and constraints. The approach automatically adapts the motion of the mocap subject to the body shape of a target subject. This motion respects the physical properties of the new body and every body shape results in a different and appropriate movement. This makes it easy to create a varied set of motions from a single mocap sequence by simply varying the characters. In an interactive environment, successful retargeting requires adapting the motion to unexpected external forces. We achieve robustness to such forces using a novel LQR-tree formulation. We show that the simulated motions look appropriate to each character’s anatomy and their actions are robust to perturbations.

mg ps

pdf video Project Page Project Page [BibTex]

pdf video Project Page Project Page [BibTex]


Thumb xl fitter18 frai imus
Teaching a Robot Bimanual Hand-Clapping Games via Wrist-Worn IMUs

Fitter, N. T., Kuchenbecker, K. J.

Frontiers in Robotics and Artificial Intelligence, 5(85), July 2018 (article)

Abstract
Colleagues often shake hands in greeting, friends connect through high fives, and children around the world rejoice in hand-clapping games. As robots become more common in everyday human life, they will have the opportunity to join in these social-physical interactions, but few current robots are intended to touch people in friendly ways. This article describes how we enabled a Baxter Research Robot to both teach and learn bimanual hand-clapping games with a human partner. Our system monitors the user's motions via a pair of inertial measurement units (IMUs) worn on the wrists. We recorded a labeled library of 10 common hand-clapping movements from 10 participants; this dataset was used to train an SVM classifier to automatically identify hand-clapping motions from previously unseen participants with a test-set classification accuracy of 97.0%. Baxter uses these sensors and this classifier to quickly identify the motions of its human gameplay partner, so that it can join in hand-clapping games. This system was evaluated by N = 24 naïve users in an experiment that involved learning sequences of eight motions from Baxter, teaching Baxter eight-motion game patterns, and completing a free interaction period. The motion classification accuracy in this less structured setting was 85.9%, primarily due to unexpected variations in motion timing. The quantitative task performance results and qualitative participant survey responses showed that learning games from Baxter was significantly easier than teaching games to Baxter, and that the teaching role caused users to consider more teamwork aspects of the gameplay. Over the course of the experiment, people felt more understood by Baxter and became more willing to follow the example of the robot. Users felt uniformly safe interacting with Baxter, and they expressed positive opinions of Baxter and reported fun interacting with the robot. Taken together, the results indicate that this robot achieved credible social-physical interaction with humans and that its ability to both lead and follow systematically changed the human partner's experience.

hi

DOI [BibTex]

DOI [BibTex]


Thumb xl screen shot 2018 06 29 at 4.24.39 pm
Innate turning preference of leaf-cutting ants in the absence of external orientation cues

Endlein, T., Sitti, M.

Journal of Experimental Biology, The Company of Biologists Ltd, June 2018 (article)

Abstract
Many ants use a combination of cues for orientation but how do ants find their way when all external cues are suppressed? Do they walk in a random way or are their movements spatially oriented? Here we show for the first time that leaf-cutting ants (Acromyrmex lundii) have an innate preference of turning counter-clockwise (left) when external cues are precluded. We demonstrated this by allowing individual ants to run freely on the water surface of a newly-developed treadmill. The surface tension supported medium-sized workers but effectively prevented ants from reaching the wall of the vessel, important to avoid wall-following behaviour (thigmotaxis). Most ants ran for minutes on the spot but also slowly turned counter-clockwise in the absence of visual cues. Reconstructing the effectively walked path revealed a looping pattern which could be interpreted as a search strategy. A similar turning bias was shown for groups of ants in a symmetrical Y-maze where twice as many ants chose the left branch in the absence of optical cues. Wall-following behaviour was tested by inserting a coiled tube before the Y-fork. When ants traversed a left-coiled tube, more ants chose the left box and vice versa. Adding visual cues in form of vertical black strips either outside the treadmill or on one branch of the Y-maze led to oriented walks towards the strips. It is suggested that both, the turning bias and the wall-following are employed as search strategies for an unknown environment which can be overridden by visual cues.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl 1
Motility and chemotaxis of bacteria-driven microswimmers fabricated using antigen 43-mediated biotin display

Schauer, O., Mostaghaci, B., Colin, R., Hürtgen, D., Kraus, D., Sitti, M., Sourjik, V.

Scientific Reports, 8(1):9801, Nature Publishing Group, June 2018 (article)

Abstract
Bacteria-driven biohybrid microswimmers (bacteriabots) combine synthetic cargo with motile living bacteria that enable propulsion and steering. Although fabrication and potential use of such bacteriabots have attracted much attention, existing methods of fabrication require an extensive sample preparation that can drastically decrease the viability and motility of bacteria. Moreover, chemotactic behavior of bacteriabots in a liquid medium with chemical gradients has remained largely unclear. To overcome these shortcomings, we designed Escherichia coli to autonomously display biotin on its cell surface via the engineered autotransporter antigen 43 and thus to bind streptavidin-coated cargo. We show that the cargo attachment to these bacteria is greatly enhanced by motility and occurs predominantly at the cell poles, which is greatly beneficial for the fabrication of motile bacteriabots. We further performed a systemic study to understand and optimize the ability of these bacteriabots to follow chemical gradients. We demonstrate that the chemotaxis of bacteriabots is primarily limited by the cargo-dependent reduction of swimming speed and show that the fabrication of bacteriabots using elongated E. coli cells can be used to overcome this limitation.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl 41586 2018 250 fig1 html
Multifunctional ferrofluid-infused surfaces with reconfigurable multiscale topography

Wang, W., Timonen, J. V. I., Carlson, A., Drotlef, D., Zhang, C. T., Kolle, S., Grinthal, A., Wong, T., Hatton, B., Kang, S. H., Kennedy, S., Chi, J., Blough, R. T., Sitti, M., Mahadevan, L., Aizenberg, J.

Nature, June 2018 (article)

Abstract
Developing adaptive materials with geometries that change in response to external stimuli provides fundamental insights into the links between the physical forces involved and the resultant morphologies and creates a foundation for technologically relevant dynamic systems1,2. In particular, reconfigurable surface topography as a means to control interfacial properties 3 has recently been explored using responsive gels 4 , shape-memory polymers 5 , liquid crystals6-8 and hybrid composites9-14, including magnetically active slippery surfaces12-14. However, these designs exhibit a limited range of topographical changes and thus a restricted scope of function. Here we introduce a hierarchical magneto-responsive composite surface, made by infiltrating a ferrofluid into a microstructured matrix (termed ferrofluid-containing liquid-infused porous surfaces, or FLIPS). We demonstrate various topographical reconfigurations at multiple length scales and a broad range of associated emergent behaviours. An applied magnetic-field gradient induces the movement of magnetic nanoparticles suspended in the ferrofluid, which leads to microscale flow of the ferrofluid first above and then within the microstructured surface. This redistribution changes the initially smooth surface of the ferrofluid (which is immobilized by the porous matrix through capillary forces) into various multiscale hierarchical topographies shaped by the size, arrangement and orientation of the confining microstructures in the magnetic field. We analyse the spatial and temporal dynamics of these reconfigurations theoretically and experimentally as a function of the balance between capillary and magnetic pressures15-19 and of the geometric anisotropy of the FLIPS system. Several interesting functions at three different length scales are demonstrated: self-assembly of colloidal particles at the micrometre scale; regulated flow of liquid droplets at the millimetre scale; and switchable adhesion and friction, liquid pumping and removal of biofilms at the centimetre scale. We envision that FLIPS could be used as part of integrated control systems for the manipulation and transport of matter, thermal management, microfluidics and fouling-release materials.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Reducing 3D Vibrations to 1D in Real Time

Park, G., Kuchenbecker, K. J.

Hands-on demonstration presented at EuroHaptics, Pisa, Italy, June 2018 (misc)

Abstract
In this demonstration, you will hold two pen-shaped modules: an in-pen and an out-pen. The in-pen is instrumented with a high-bandwidth three-axis accelerometer, and the out-pen contains a one-axis voice coil actuator. Use the in-pen to interact with different surfaces; the measured 3D accelerations are continually converted into 1D vibrations and rendered with the out-pen for you to feel. You can test conversion methods that range from simply selecting a single axis to applying a discrete Fourier transform or principal component analysis for realistic and brisk real-time conversion.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Haptipedia: Exploring Haptic Device Design Through Interactive Visualizations

Seifi, H., Fazlollahi, F., Park, G., Kuchenbecker, K. J., MacLean, K. E.

Hands-on demonstration presented at EuroHaptics, Pisa, Italy, June 2018 (misc)

Abstract
How many haptic devices have been proposed in the last 30 years? How can we leverage this rich source of design knowledge to inspire future innovations? Our goal is to make historical haptic invention accessible through interactive visualization of a comprehensive library – a Haptipedia – of devices that have been annotated with designer-relevant metadata. In this demonstration, participants can explore Haptipedia’s growing library of grounded force feedback devices through several prototype visualizations, interact with 3D simulations of the device mechanisms and movements, and tell us about the attributes and devices that could make Haptipedia a useful resource for the haptic design community.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Delivering 6-DOF Fingertip Tactile Cues

Young, E., Kuchenbecker, K. J.

Work-in-progress paper (5 pages) presented at EuroHaptics, Pisa, Italy, June 2018 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl koala
Designing a Haptic Empathetic Robot Animal for Children with Autism

Burns, R., Kuchenbecker, K. J.

Workshop paper (4 pages) presented at the Robotics: Science and Systems Workshop on Robot-Mediated Autism Intervention: Hardware, Software and Curriculum, Pittsburgh, USA, June 2018 (misc)

Abstract
Children with autism often endure sensory overload, may be nonverbal, and have difficulty understanding and relaying emotions. These experiences result in heightened stress during social interaction. Animal-assisted intervention has been found to improve the behavior of children with autism during social interaction, but live animal companions are not always feasible. We are thus in the process of designing a robotic animal to mimic some successful characteristics of animal-assisted intervention while trying to improve on others. The over-arching hypothesis of this research is that an appropriately designed robot animal can reduce stress in children with autism and empower them to engage in social interaction.

hi

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Soft Multi-Axis Boundary-Electrode Tactile Sensors for Whole-Body Robotic Skin

Lee, H., Kim, J., Kuchenbecker, K. J.

Workshop paper (2 pages) presented at the RSS Pioneers Workshop, Pittsburgh, USA, June 2018 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl selfsensing
Self-Sensing Paper Actuators Based on Graphite–Carbon Nanotube Hybrid Films

Amjadi, M., Sitti, M.

Advanced Science, pages: 1800239, May 2018 (article)

Abstract
Abstract Soft actuators have demonstrated potential in a range of applications, including soft robotics, artificial muscles, and biomimetic devices. However, the majority of current soft actuators suffer from the lack of real-time sensory feedback, prohibiting their effective sensing and multitask function. Here, a promising strategy is reported to design bilayer electrothermal actuators capable of simultaneous actuation and sensation (i.e., self-sensing actuators), merely through two input electric terminals. Decoupled electrothermal stimulation and strain sensation is achieved by the optimal combination of graphite microparticles and carbon nanotubes (CNTs) in the form of hybrid films. By finely tuning the charge transport properties of hybrid films, the signal-to-noise ratio (SNR) of self-sensing actuators is remarkably enhanced to over 66. As a result, self-sensing actuators can actively track their displacement and distinguish the touch of soft and hard objects.

pi

link (url) DOI Project Page [BibTex]


no image
Haptics and Haptic Interfaces

Kuchenbecker, K. J.

In Encyclopedia of Robotics, (Editors: Marcelo H. Ang and Oussama Khatib and Bruno Siciliano), Springer, May 2018 (incollection)

Abstract
Haptics is an interdisciplinary field that seeks to both understand and engineer touch-based interaction. Although a wide range of systems and applications are being investigated, haptics researchers often concentrate on perception and manipulation through the human hand. A haptic interface is a mechatronic system that modulates the physical interaction between a human and his or her tangible surroundings. Haptic interfaces typically involve mechanical, electrical, and computational layers that work together to sense user motions or forces, quickly process these inputs with other information, and physically respond by actuating elements of the user’s surroundings, thereby enabling him or her to act on and feel a remote and/or virtual environment.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl f1.large
Soft erythrocyte-based bacterial microswimmers for cargo delivery

Alapan, Y., Yasa, O., Schauer, O., Giltinan, J., Tabak, A. F., Sourjik, V., Sitti, M.

Science Robotics, 3(17):eaar4423, Science Robotics, April 2018 (article)

Abstract
Bacteria-propelled biohybrid microswimmers have recently shown to be able to actively transport and deliver cargos encapsulated into their synthetic constructs to specific regions locally. However, usage of synthetic materials as cargo carriers can result in inferior performance in load-carrying efficiency, biocompatibility, and biodegradability, impeding clinical translation of biohybrid microswimmers. Here, we report construction and external guidance of bacteria-driven microswimmers using red blood cells (RBCs; erythrocytes) as autologous cargo carriers for active and guided drug delivery. Multifunctional biohybrid microswimmers were fabricated by attachment of RBCs [loaded with anticancer doxorubicin drug molecules and superparamagnetic iron oxide nanoparticles (SPIONs)] to bioengineered motile bacteria, Escherichia coli MG1655, via biotin-avidin-biotin binding complex. Autonomous and on-board propulsion of biohybrid microswimmers was provided by bacteria, and their external magnetic guidance was enabled by SPIONs loaded into the RBCs. Furthermore, bacteria-driven RBC microswimmers displayed preserved deformability and attachment stability even after squeezing in microchannels smaller than their sizes, as in the case of bare RBCs. In addition, an on-demand light-activated hyperthermia termination switch was engineered for RBC microswimmers to control bacteria population after operations. RBCs, as biological and autologous cargo carriers in the biohybrid microswimmers, offer notable advantages in stability, deformability, biocompatibility, and biodegradability over synthetic cargo-carrier materials. The biohybrid microswimmer design presented here transforms RBCs from passive cargo carriers into active and guidable cargo carriers toward targeted drug and other cargo delivery applications in medicine.

pi

link (url) DOI Project Page Project Page [BibTex]

link (url) DOI Project Page Project Page [BibTex]


no image
Automatically Rating Trainee Skill at a Pediatric Laparoscopic Suturing Task

Oquendo, Y. A., Riddle, E. W., Hiller, D., Blinman, T. A., Kuchenbecker, K. J.

Surgical Endoscopy, 32(4):1840-1857, April 2018 (article)

hi

DOI [BibTex]

DOI [BibTex]


no image
Miniature soft robots – road to the clinic

Sitti, M.

Nature Reviews Materials, April 2018 (article)

Abstract
Soft small robots offer the opportunity to non-invasively access human tissue to perform medical operations and deliver drugs; however, challenges in materials design, biocompatibility and function control remain to be overcome for soft robots to reach the clinic.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl thesis cover2
Model-based Optical Flow: Layers, Learning, and Geometry

Wulff, J.

Tuebingen University, April 2018 (phdthesis)

Abstract
The estimation of motion in video sequences establishes temporal correspondences between pixels and surfaces and allows reasoning about a scene using multiple frames. Despite being a focus of research for over three decades, computing motion, or optical flow, remains challenging due to a number of difficulties, including the treatment of motion discontinuities and occluded regions, and the integration of information from more than two frames. One reason for these issues is that most optical flow algorithms only reason about the motion of pixels on the image plane, while not taking the image formation pipeline or the 3D structure of the world into account. One approach to address this uses layered models, which represent the occlusion structure of a scene and provide an approximation to the geometry. The goal of this dissertation is to show ways to inject additional knowledge about the scene into layered methods, making them more robust, faster, and more accurate. First, this thesis demonstrates the modeling power of layers using the example of motion blur in videos, which is caused by fast motion relative to the exposure time of the camera. Layers segment the scene into regions that move coherently while preserving their occlusion relationships. The motion of each layer therefore directly determines its motion blur. At the same time, the layered model captures complex blur overlap effects at motion discontinuities. Using layers, we can thus formulate a generative model for blurred video sequences, and use this model to simultaneously deblur a video and compute accurate optical flow for highly dynamic scenes containing motion blur. Next, we consider the representation of the motion within layers. Since, in a layered model, important motion discontinuities are captured by the segmentation into layers, the flow within each layer varies smoothly and can be approximated using a low dimensional subspace. We show how this subspace can be learned from training data using principal component analysis (PCA), and that flow estimation using this subspace is computationally efficient. The combination of the layered model and the low-dimensional subspace gives the best of both worlds, sharp motion discontinuities from the layers and computational efficiency from the subspace. Lastly, we show how layered methods can be dramatically improved using simple semantics. Instead of treating all layers equally, a semantic segmentation divides the scene into its static parts and moving objects. Static parts of the scene constitute a large majority of what is shown in typical video sequences; yet, in such regions optical flow is fully constrained by the depth structure of the scene and the camera motion. After segmenting out moving objects, we consider only static regions, and explicitly reason about the structure of the scene and the camera motion, yielding much better optical flow estimates. Furthermore, computing the structure of the scene allows to better combine information from multiple frames, resulting in high accuracies even in occluded regions. For moving regions, we compute the flow using a generic optical flow method, and combine it with the flow computed for the static regions to obtain a full optical flow field. By combining layered models of the scene with reasoning about the dynamic behavior of the real, three-dimensional world, the methods presented herein push the envelope of optical flow computation in terms of robustness, speed, and accuracy, giving state-of-the-art results on benchmarks and pointing to important future research directions for the estimation of motion in natural scenes.

ps

Official link DOI Project Page [BibTex]


Thumb xl nl 2018 001642 0005
Wrinkling Instability and Adhesion of a Highly Bendable Gallium Oxide Nanofilm Encapsulating a Liquid-Gallium Droplet

Yunusa, M., Amador, G. J., Drotlef, D., Sitti, M.

Nano Letters, 18(4):2498-2504, March 2018 (article)

Abstract
The wrinkling and interfacial adhesion mechanics of a gallium-oxide nanofilm encapsulating a liquid-gallium droplet are presented. The native oxide nanofilm provides mechanical stability by preventing the flow of the liquid metal. We show how a crumpled oxide skin a few nanometers thick behaves akin to a highly bendable elastic nanofilm under ambient conditions. Upon compression, a wrinkling instability emerges at the contact interface to relieve the applied stress. As the load is further increased, radial wrinkles evolve, and, eventually, the oxide nanofilm ruptures. The observed wrinkling closely resembles the instability experienced by nanofilms under axisymmetric loading, thus providing further insights into the behaviors of elastic nanofilms. Moreover, the mechanical attributes of the oxide skin enable high surface conformation by exhibiting liquid-like behavior. We measured an adhesion energy of 0.238 ± 0.008 J m–2 between a liquid-gallium droplet and smooth flat glass, which is close to the measurements of thin-sheet nanomaterials such as graphene on silicon dioxide.

pi

link (url) DOI [BibTex]


Thumb xl screenshot 2018 5 9 1803 01048 pdf
Magnetic-Visual Sensor Fusion-based Dense 3D Reconstruction and Localization for Endoscopic Capsule Robots

Turan, M., Almalioglu, Y., Ornek, E. P., Araujo, H., Yanik, M. F., Sitti, M.

ArXiv e-prints, March 2018 (article)

Abstract
Reliable and real-time 3D reconstruction and localization functionality is a crucial prerequisite for the navigation of actively controlled capsule endoscopic robots as an emerging, minimally invasive diagnostic and therapeutic technology for use in the gastrointestinal (GI) tract. In this study, we propose a fully dense, non-rigidly deformable, strictly real-time, intraoperative map fusion approach for actively controlled endoscopic capsule robot applications which combines magnetic and vision-based localization, with non-rigid deformations based frame-to-model map fusion. The performance of the proposed method is demonstrated using four different ex-vivo porcine stomach models. Across different trajectories of varying speed and complexity, and four different endoscopic cameras, the root mean square surface reconstruction errors 1.58 to 2.17 cm.

pi

link (url) [BibTex]

link (url) [BibTex]


Thumb xl screenshot 2018 5 9 1803 01047 pdf
Unsupervised Odometry and Depth Learning for Endoscopic Capsule Robots

Turan, M., Ornek, E. P., Ibrahimli, N., Giracoglu, C., Almalioglu, Y., Yanik, M. F., Sitti, M.

ArXiv e-prints, March 2018 (article)

Abstract
In the last decade, many medical companies and research groups have tried to convert passive capsule endoscopes as an emerging and minimally invasive diagnostic technology into actively steerable endoscopic capsule robots which will provide more intuitive disease detection, targeted drug delivery and biopsy-like operations in the gastrointestinal(GI) tract. In this study, we introduce a fully unsupervised, real-time odometry and depth learner for monocular endoscopic capsule robots. We establish the supervision by warping view sequences and assigning the re-projection minimization to the loss function, which we adopt in multi-view pose estimation and single-view depth estimation network. Detailed quantitative and qualitative analyses of the proposed framework performed on non-rigidly deformable ex-vivo porcine stomach datasets proves the effectiveness of the method in terms of motion estimation and depth recovery.

pi

link (url) [BibTex]

link (url) [BibTex]