Header logo is


2018


Thumb xl thesis cover2
Model-based Optical Flow: Layers, Learning, and Geometry

Wulff, J.

Tuebingen University, April 2018 (phdthesis)

Abstract
The estimation of motion in video sequences establishes temporal correspondences between pixels and surfaces and allows reasoning about a scene using multiple frames. Despite being a focus of research for over three decades, computing motion, or optical flow, remains challenging due to a number of difficulties, including the treatment of motion discontinuities and occluded regions, and the integration of information from more than two frames. One reason for these issues is that most optical flow algorithms only reason about the motion of pixels on the image plane, while not taking the image formation pipeline or the 3D structure of the world into account. One approach to address this uses layered models, which represent the occlusion structure of a scene and provide an approximation to the geometry. The goal of this dissertation is to show ways to inject additional knowledge about the scene into layered methods, making them more robust, faster, and more accurate. First, this thesis demonstrates the modeling power of layers using the example of motion blur in videos, which is caused by fast motion relative to the exposure time of the camera. Layers segment the scene into regions that move coherently while preserving their occlusion relationships. The motion of each layer therefore directly determines its motion blur. At the same time, the layered model captures complex blur overlap effects at motion discontinuities. Using layers, we can thus formulate a generative model for blurred video sequences, and use this model to simultaneously deblur a video and compute accurate optical flow for highly dynamic scenes containing motion blur. Next, we consider the representation of the motion within layers. Since, in a layered model, important motion discontinuities are captured by the segmentation into layers, the flow within each layer varies smoothly and can be approximated using a low dimensional subspace. We show how this subspace can be learned from training data using principal component analysis (PCA), and that flow estimation using this subspace is computationally efficient. The combination of the layered model and the low-dimensional subspace gives the best of both worlds, sharp motion discontinuities from the layers and computational efficiency from the subspace. Lastly, we show how layered methods can be dramatically improved using simple semantics. Instead of treating all layers equally, a semantic segmentation divides the scene into its static parts and moving objects. Static parts of the scene constitute a large majority of what is shown in typical video sequences; yet, in such regions optical flow is fully constrained by the depth structure of the scene and the camera motion. After segmenting out moving objects, we consider only static regions, and explicitly reason about the structure of the scene and the camera motion, yielding much better optical flow estimates. Furthermore, computing the structure of the scene allows to better combine information from multiple frames, resulting in high accuracies even in occluded regions. For moving regions, we compute the flow using a generic optical flow method, and combine it with the flow computed for the static regions to obtain a full optical flow field. By combining layered models of the scene with reasoning about the dynamic behavior of the real, three-dimensional world, the methods presented herein push the envelope of optical flow computation in terms of robustness, speed, and accuracy, giving state-of-the-art results on benchmarks and pointing to important future research directions for the estimation of motion in natural scenes.

ps

Official link DOI Project Page [BibTex]


no image
A virtual reality environment for experiments in assistive robotics and neural interfaces

Bustamante, S.

Graduate School of Neural Information Processing, Eberhard Karls Universität Tübingen, Germany, 2018 (mastersthesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
Optimal Trajectory Generation and Learning Control for Robot Table Tennis

Koc, O.

Technical University Darmstadt, Germany, 2018 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Distribution-Dissimilarities in Machine Learning

Simon-Gabriel, C. J.

Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Domain Adaptation Under Causal Assumptions

Lechner, T.

Eberhard Karls Universität Tübingen, Germany, 2018 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
A Causal Perspective on Deep Representation Learning

Suter, R.

ETH Zurich, 2018 (mastersthesis)

ei

[BibTex]


no image
Probabilistic Approaches to Stochastic Optimization

Mahsereci, M.

Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

ei pn

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Reinforcement Learning for High-Speed Robotics with Muscular Actuation

Guist, S.

Ruprecht-Karls-Universität Heidelberg , 2018 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Probabilistic Ordinary Differential Equation Solvers — Theory and Applications

Schober, M.

Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

ei pn

[BibTex]

[BibTex]


no image
A machine learning approach to taking EEG-based computer interfaces out of the lab

Jayaram, V.

Graduate Training Centre of Neuroscience, IMPRS, Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

ei

[BibTex]

[BibTex]

2016


Thumb xl screen shot 2016 07 25 at 13.52.05
Non-parametric Models for Structured Data and Applications to Human Bodies and Natural Scenes

Lehrmann, A.

ETH Zurich, July 2016 (phdthesis)

Abstract
The purpose of this thesis is the study of non-parametric models for structured data and their fields of application in computer vision. We aim at the development of context-sensitive architectures which are both expressive and efficient. Our focus is on directed graphical models, in particular Bayesian networks, where we combine the flexibility of non-parametric local distributions with the efficiency of a global topology with bounded treewidth. A bound on the treewidth is obtained by either constraining the maximum indegree of the underlying graph structure or by introducing determinism. The non-parametric distributions in the nodes of the graph are given by decision trees or kernel density estimators. The information flow implied by specific network topologies, especially the resultant (conditional) independencies, allows for a natural integration and control of contextual information. We distinguish between three different types of context: static, dynamic, and semantic. In four different approaches we propose models which exhibit varying combinations of these contextual properties and allow modeling of structured data in space, time, and hierarchies derived thereof. The generative character of the presented models enables a direct synthesis of plausible hypotheses. Extensive experiments validate the developed models in two application scenarios which are of particular interest in computer vision: human bodies and natural scenes. In the practical sections of this work we discuss both areas from different angles and show applications of our models to human pose, motion, and segmentation as well as object categorization and localization. Here, we benefit from the availability of modern datasets of unprecedented size and diversity. Comparisons to traditional approaches and state-of-the-art research on the basis of well-established evaluation criteria allows the objective assessment of our contributions.

ps

pdf [BibTex]

2011


no image
JMLR Workshop and Conference Proceedings Volume 19: COLT 2011

Kakade, S., von Luxburg, U.

pages: 834, MIT Press, Cambridge, MA, USA, 24th Annual Conference on Learning Theory , June 2011 (proceedings)

ei

Web [BibTex]

2011


Web [BibTex]


no image
Crowdsourcing for optimisation of deconvolution methods via an iPhone application

Lang, A.

Hochschule Reutlingen, Germany, April 2011 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Model Learning in Robot Control

Nguyen-Tuong, D.

Albert-Ludwigs-Universität Freiburg, Germany, 2011 (phdthesis)

ei

[BibTex]

[BibTex]

2008


no image
Reinforcement Learning for Motor Primitives

Kober, J.

Biologische Kybernetik, University of Stuttgart, Stuttgart, Germany, August 2008 (diplomathesis)

ei

PDF [BibTex]

2008


PDF [BibTex]


no image
Asymmetries of Time Series under Inverting their Direction

Peters, J.

Biologische Kybernetik, University of Heidelberg, August 2008 (diplomathesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
Learning an Interest Operator from Human Eye Movements

Kienzle, W.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, July 2008 (phdthesis)

ei

[BibTex]

[BibTex]


no image
CogRob 2008: The 6th International Cognitive Robotics Workshop

Lespérance, Y., Lakemeyer, G., Peters, J., Pirri, F.

Proceedings of the 6th International Cognitive Robotics Workshop (CogRob 2008), pages: 35, Patras University Press, Patras, Greece, 6th International Cognitive Robotics Workshop (CogRob), July 2008 (proceedings)

ei

Web [BibTex]

Web [BibTex]


no image
Causal inference from statistical data

Sun, X.

Biologische Kybernetik, Technische Hochschule Karlsruhe, Karlsruhe, Germany, April 2008 (phdthesis)

ei

Web [BibTex]

Web [BibTex]


no image
Pairwise Correlations and Multineuronal Firing Patterns in Primary Visual Cortex

Berens, P.

Biologische Kybernetik, Eberhard Karls Universität Tübingen, Tübingen, Germany, April 2008 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
Development and Application of a Python Scripting Framework for BCI2000

Schreiner, T.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, January 2008 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
Efficient and Invariant Regularisation with Application to Computer Graphics

Walder, CJ.

Biologische Kybernetik, University of Queensland, Brisbane, Australia, January 2008 (phdthesis)

Abstract
This thesis develops the theory and practise of reproducing kernel methods. Many functional inverse problems which arise in, for example, machine learning and computer graphics, have been treated with practical success using methods based on a reproducing kernel Hilbert space perspective. This perspective is often theoretically convenient, in that many functional analysis problems reduce to linear algebra problems in these spaces. Somewhat more complex is the case of conditionally positive definite kernels, and we provide an introduction to both cases, deriving in a particularly elementary manner some key results for the conditionally positive definite case. A common complaint of the practitioner is the long running time of these kernel based algorithms. We provide novel ways of alleviating these problems by essentially using a non-standard function basis which yields computational advantages. That said, by doing so we must also forego the aforementioned theoretical conveniences, and hence need some additional analysis which we provide in order to make the approach practicable. We demonstrate that the method leads to state of the art performance on the problem of surface reconstruction from points. We also provide some analysis of kernels invariant to transformations such as translation and dilation, and show that this indicates the value of learning algorithms which use conditionally positive definite kernels. Correspondingly, we provide a few approaches for making such algorithms practicable. We do this either by modifying the kernel, or directly solving problems with conditionally positive definite kernels, which had previously only been solved with positive definite kernels. We demonstrate the advantage of this approach, in particular by attaining state of the art classification performance with only one free parameter.

ei

PDF [BibTex]

PDF [BibTex]