Header logo is


2009


Thumb xl teaser wacv2010
Ball Joints for Marker-less Human Motion Capture

Pons-Moll, G., Rosenhahn, B.

In IEEE Workshop on Applications of Computer Vision (WACV),, December 2009 (inproceedings)

ps

pdf [BibTex]

2009


pdf [BibTex]


no image
Background Subtraction Based on Rank Constraint for Point Trajectories

Ahmad, A., Del Bue, A., Lima, P.

In pages: 1-3, 15th Portuguese Conference on Pattern Recognition (RecPad), October 2009 (inproceedings)

Abstract
This work deals with a background subtraction algorithm for a fish-eye lens camera having 3 degrees of freedom, 2 in translation and 1 in rotation. The core assumption in this algorithm is that the background is considered to be composed of a dominant static plane in the world frame. The novelty lies in developing a rank-constraint based background subtraction for equidistant projection model, a property of the fish-eye lens. A detail simulation result is presented to support the hypotheses explained in this paper.

ps

link (url) [BibTex]

link (url) [BibTex]


Thumb xl teaser cinc
Parametric Modeling of the Beating Heart with Respiratory Motion Extracted from Magnetic Resonance Images

Pons-Moll, G., Crosas, C., Tadmor, G., MacLeod, R., Rosenhahn, B., Brooks, D.

In IEEE Computers in Cardiology (CINC), September 2009 (inproceedings)

ps

[BibTex]

[BibTex]


Thumb xl ascc09
Computer cursor control by motor cortical signals in humans with tetraplegia

Kim, S., Simeral, J. D., Hochberg, L. R., Donoghue, J. P., Black, M. J.

In 7th Asian Control Conference, ASCC09, pages: 988-993, Hong Kong, China, August 2009 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


no image
Classification of colon polyps in NBI endoscopy using vascularization features

Stehle, T., Auer, R., Gross, S., Behrens, A., Wulff, J., Aach, T., Winograd, R., Trautwein, C., Tischendorf, J.

In Medical Imaging 2009: Computer-Aided Diagnosis, 7260, (Editors: N. Karssemeijer and M. L. Giger), SPIE, February 2009 (inproceedings)

Abstract
The evolution of colon cancer starts with colon polyps. There are two different types of colon polyps, namely hyperplasias and adenomas. Hyperplasias are benign polyps which are known not to evolve into cancer and, therefore, do not need to be removed. By contrast, adenomas have a strong tendency to become malignant. Therefore, they have to be removed immediately via polypectomy. For this reason, a method to differentiate reliably adenomas from hyperplasias during a preventive medical endoscopy of the colon (colonoscopy) is highly desirable. A recent study has shown that it is possible to distinguish both types of polyps visually by means of their vascularization. Adenomas exhibit a large amount of blood vessel capillaries on their surface whereas hyperplasias show only few of them. In this paper, we show the feasibility of computer-based classification of colon polyps using vascularization features. The proposed classification algorithm consists of several steps: For the critical part of vessel segmentation, we implemented and compared two segmentation algorithms. After a skeletonization of the detected blood vessel candidates, we used the results as seed points for the Fast Marching algorithm which is used to segment the whole vessel lumen. Subsequently, features are computed from this segmentation which are then used to classify the polyps. In leave-one-out tests on our polyp database (56 polyps), we achieve a correct classification rate of approximately 90%.

ps

DOI [BibTex]

DOI [BibTex]


Thumb xl screen shot 2015 08 23 at 14.50.55
Grasping familiar objects using shape context

Bohg, J., Kragic, D.

In Advanced Robotics, 2009. ICAR 2009. International Conference on, pages: 1-6, 2009 (inproceedings)

Abstract
We present work on vision based robotic grasping. The proposed method relies on extracting and representing the global contour of an object in a monocular image. A suitable grasp is then generated using a learning framework where prototypical grasping points are learned from several examples and then used on novel objects. For representation purposes, we apply the concept of shape context and for learning we use a supervised learning approach in which the classifier is trained with labeled synthetic images. Our results show that a combination of a descriptor based on shape context with a non-linear classification algorithm leads to a stable detection of grasping points for a variety of objects. Furthermore, we will show how our representation supports the inference of a full grasp configuration.

am

pdf slides [BibTex]

pdf slides [BibTex]


Thumb xl 3dim09
One-shot scanning using de bruijn spaced grids

Ulusoy, A., Calakli, F., Taubin, G.

In Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on, pages: 1786-1792, IEEE, 2009 (inproceedings)

Abstract
In this paper we present a new one-shot method to reconstruct the shape of dynamic 3D objects and scenes based on active illumination. In common with other related prior-art methods, a static grid pattern is projected onto the scene, a video sequence of the illuminated scene is captured, a shape estimate is produced independently for each video frame, and the one-shot property is realized at the expense of space resolution. The main challenge in grid-based one-shot methods is to engineer the pattern and algorithms so that the correspondence between pattern grid points and their images can be established very fast and without uncertainty. We present an efficient one-shot method which exploits simple geometric constraints to solve the correspondence problem. We also introduce De Bruijn spaced grids, a novel grid pattern, and show with strong empirical data that the resulting scheme is much more robust compared to those based on uniform spaced grids.

ps

pdf link (url) DOI [BibTex]

pdf link (url) DOI [BibTex]


Thumb xl 5420560 fig 1 glance
Sensory-objects network driven by intrinsic motivation for survival abilities

Berenz, V., Suzuki, K.

In Robotics and Biomimetics (ROBIO), 2009 IEEE International Conference on, pages: 871-876, 2009 (inproceedings)

am

DOI [BibTex]

DOI [BibTex]


Thumb xl screen shot 2012 02 21 at 15.56.00  2
On feature combination for multiclass object classification

Gehler, P., Nowozin, S.

In Proceedings of the Twelfth IEEE International Conference on Computer Vision, pages: 221-228, ICCV, 2009, oral presentation (inproceedings)

ei ps

project page, code, data GoogleScholar pdf DOI [BibTex]

project page, code, data GoogleScholar pdf DOI [BibTex]


Thumb xl iccv09
Estimating human shape and pose from a single image

Guan, P., Weiss, A., Balan, A., Black, M. J.

In Int. Conf. on Computer Vision, ICCV, pages: 1381-1388, 2009 (inproceedings)

Abstract
We describe a solution to the challenging problem of estimating human body shape from a single photograph or painting. Our approach computes shape and pose parameters of a 3D human body model directly from monocular image cues and advances the state of the art in several directions. First, given a user-supplied estimate of the subject's height and a few clicked points on the body we estimate an initial 3D articulated body pose and shape. Second, using this initial guess we generate a tri-map of regions inside, outside and on the boundary of the human, which is used to segment the image using graph cuts. Third, we learn a low-dimensional linear model of human shape in which variations due to height are concentrated along a single dimension, enabling height-constrained estimation of body shape. Fourth, we formulate the problem of parametric human shape from shading. We estimate the body pose, shape and reflectance as well as the scene lighting that produces a synthesized body that robustly matches the image evidence. Quantitative experiments demonstrate how smooth shading provides powerful constraints on human shape. We further demonstrate a novel application in which we extract 3D human models from archival photographs and paintings.

ps

pdf video - mov 25MB video - mp4 10MB YouTube Project Page [BibTex]

pdf video - mov 25MB video - mp4 10MB YouTube Project Page [BibTex]


no image
A Limiting Property of the Matrix Exponential with Application to Multi-loop Control

Trimpe, S., D’Andrea, R.

In Proceedings of the Joint 48th IEEE Conference on Decision (CDC) and Control and 28th Chinese Control Conference, 2009 (inproceedings)

am ics

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Path integral-based stochastic optimal control for rigid body dynamics

Theodorou, E. A., Buchli, J., Schaal, S.

In Adaptive Dynamic Programming and Reinforcement Learning, 2009. ADPRL ’09. IEEE Symposium on, pages: 219-225, 2009, clmc (inproceedings)

Abstract
Recent advances on path integral stochastic optimal control [1],[2] provide new insights in the optimal control of nonlinear stochastic systems which are linear in the controls, with state independent and time invariant control transition matrix. Under these assumptions, the Hamilton-Jacobi-Bellman (HJB) equation is formulated and linearized with the use of the logarithmic transformation of the optimal value function. The resulting HJB is a linear second order partial differential equation which is solved by an approximation based on the Feynman-Kac formula [3]. In this work we review the theory of path integral control and derive the linearized HJB equation for systems with state dependent control transition matrix. In addition we derive the path integral formulation for the general class of systems with state dimensionality that is higher than the dimensionality of the controls. Furthermore, by means of a modified inverse dynamics controller, we apply path integral stochastic optimal control over the new control space. Simulations illustrate the theoretical results. Future developments and extensions are discussed.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Learning locomotion over rough terrain using terrain templates

Kalakrishnan, M., Buchli, J., Pastor, P., Schaal, S.

In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages: 167-172, 2009, clmc (inproceedings)

Abstract
We address the problem of foothold selection in robotic legged locomotion over very rough terrain. The difficulty of the problem we address here is comparable to that of human rock-climbing, where foot/hand-hold selection is one of the most critical aspects. Previous work in this domain typically involves defining a reward function over footholds as a weighted linear combination of terrain features. However, a significant amount of effort needs to be spent in designing these features in order to model more complex decision functions, and hand-tuning their weights is not a trivial task. We propose the use of terrain templates, which are discretized height maps of the terrain under a foothold on different length scales, as an alternative to manually designed features. We describe an algorithm that can simultaneously learn a small set of templates and a foothold ranking function using these templates, from expert-demonstrated footholds. Using the LittleDog quadruped robot, we experimentally show that the use of terrain templates can produce complex ranking functions with higher performance than standard terrain features, and improved generalization to unseen terrain.

am

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Thumb xl tracking iccv09
Segmentation, Ordering and Multi-object Tracking Using Graphical Models

Wang, C., Gorce, M. D. L., Paragios, N.

In IEEE International Conference on Computer Vision (ICCV), 2009 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


no image
Evaluating the potential of primary motor and premotor cortex for mutltidimensional neuroprosthetic control of complete reaching and grasping actions

Vargas-Irwin, C. E., Yadollahpour, P., Shakhnarovich, G., Black, M. J., Donoghue, J. P.

2009 Abstract Viewer and Itinerary Planner. Society for Neuroscience, Society for Neuroscience, 2009, Online (conference)

ps

[BibTex]

[BibTex]


no image
Compact models of motor primitive variations for predictible reaching and obstacle avoidance

Stulp, F., Oztop, E., Pastor, P., Beetz, M., Schaal, S.

In IEEE-RAS International Conference on Humanoid Robots (Humanoids 2009), Paris, Dec.7-10, 2009, clmc (inproceedings)

Abstract
over and over again. This regularity allows humans and robots to reuse existing solutions for known recurring tasks. We expect that reusing a set of standard solutions to solve similar tasks will facilitate the design and on-line adaptation of the control systems of robots operating in human environments. In this paper, we derive a set of standard solutions for reaching behavior from human motion data. We also derive stereotypical reaching trajectories for variations of the task, in which obstacles are present. These stereotypical trajectories are then compactly represented with Dynamic Movement Primitives. On the humanoid robot Sarcos CB, this approach leads to reproducible, predictable, and human-like reaching motions.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Human optimization strategies under reward feedback

Hoffmann, H., Theodorou, E., Schaal, S.

In Abstracts of Neural Control of Movement Conference (NCM 2009), Waikoloa, Hawaii, 2009, 2009, clmc (inproceedings)

Abstract
Many hypothesis on human movement generation have been cast into an optimization framework, implying that movements are adapted to optimize a single quantity, like, e.g., jerk, end-point variance, or control cost. However, we still do not understand how humans actually learn when given only a cost or reward feedback at the end of a movement. Such a reinforcement learning setting has been extensively explored theoretically in engineering and computer science, but in human movement control, hardly any experiment studied movement learning under reward feedback. We present experiments probing which computational strategies humans use to optimize a movement under a continuous reward function. We present two experimental paradigms. The first paradigm mimics a ball-hitting task. Subjects (n=12) sat in front of a computer screen and moved a stylus on a tablet towards an unknown target. This target was located on a line that the subjects had to cross. During the movement, visual feedback was suppressed. After the movement, a reward was displayed graphically as a colored bar. As reward, we used a Gaussian function of the distance between the target location and the point of line crossing. We chose such a function since in sensorimotor tasks, the cost or loss function that humans seem to represent is close to an inverted Gaussian function (Koerding and Wolpert 2004). The second paradigm mimics pocket billiards. On the same experimental setup as above, the computer screen displayed a pocket (two bars), a white disk, and a green disk. The goal was to hit with the white disk the green disk (as in a billiard collision), such that the green disk moved into the pocket. Subjects (n=8) manipulated with the stylus the white disk to effectively choose start point and movement direction. Reward feedback was implicitly given as hitting or missing the pocket with the green disk. In both paradigms, subjects increased the average reward over trials. The surprising result was that in these experiments, humans seem to prefer a strategy that uses a reward-weighted average over previous movements instead of gradient ascent. The literature on reinforcement learning is dominated by gradient-ascent methods. However, our computer simulations and theoretical analysis revealed that reward-weighted averaging is the more robust choice given the amount of movement variance observed in humans. Apparently, humans choose an optimization strategy that is suitable for their own movement variance.

am

[BibTex]

[BibTex]


Thumb xl thumb screen shot 2012 10 06 at 12.02.32 pm
Modeling and Evaluation of Human-to-Robot Mapping of Grasps

Romero, J., Kjellström, H., Kragic, D.

In International Conference on Advanced Robotics (ICAR), pages: 1-6, 2009 (inproceedings)

ps

Pdf [BibTex]

Pdf [BibTex]


Thumb xl nips2009b
An additive latent feature model for transparent object recognition

Fritz, M., Black, M., Bradski, G., Karayev, S., Darrell, T.

In Advances in Neural Information Processing Systems 22, NIPS, pages: 558-566, MIT Press, 2009 (inproceedings)

ps

pdf slides [BibTex]

pdf slides [BibTex]


Thumb xl screen shot 2012 06 06 at 11.24.14 am
Let the kernel figure it out; Principled learning of pre-processing for kernel classifiers

Gehler, P., Nowozin, S.

In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), pages: 2836-2843, IEEE Computer Society, 2009 (inproceedings)

ps

doi project page pdf [BibTex]

doi project page pdf [BibTex]


Thumb xl thumb screen shot 2012 10 06 at 12.04.52 pm
Monocular Real-Time 3D Articulated Hand Pose Estimation

Romero, J., Kjellström, H., Kragic, D.

In IEEE-RAS International Conference on Humanoid Robots, pages: 87-92, 2009 (inproceedings)

ps

Pdf [BibTex]

Pdf [BibTex]


Thumb xl snap
Grasp Recognition and Mapping on Humanoid Robots

Do, M., Romero, J., Kjellström, H., Azad, P., Asfour, T., Kragic, D., Dillmann, R.

In IEEE-RAS International Conference on Humanoid Robots, pages: 465-471, 2009 (inproceedings)

ps

Pdf Video [BibTex]

Pdf Video [BibTex]


Thumb xl teaser wc
4D Cardiac Segmentation of the Epicardium and Left Ventricle

Pons-Moll, G., Tadmor, G., MacLeod, R. S., Rosenhahn, B., Brooks, D. H.

In World Congress of Medical Physics and Biomedical Engineering (WC), 2009 (inproceedings)

ps

[BibTex]

[BibTex]


Thumb xl bmvc1
Geometric Potential Force for the Deformable Model

Si Yong Yeo, Xianghua Xie, Igor Sazonov, Perumal Nithiarasu

In The 20th British Machine Vision Conference, pages: 1-11, 2009 (inproceedings)

Abstract
We propose a new external force field for deformable models which can be conve- niently generalized to high dimensions. The external force field is based on hypothesized interactions between the relative geometries of the deformable model and image gradi- ents. The evolution of the deformable model is solved using the level set method. The dynamic interaction forces between the geometries can greatly improve the deformable model performance in acquiring complex geometries and highly concave boundaries, and in dealing with weak image edges. The new deformable model can handle arbi- trary cross-boundary initializations. Here, we show that the proposed method achieve significant improvements when compared against existing state-of-the-art techniques.

ps

[BibTex]

[BibTex]


no image
Learning and generalization of motor skills by learning from demonstration

Pastor, P., Hoffmann, H., Asfour, T., Schaal, S.

In International Conference on Robotics and Automation (ICRA2009), Kobe, Japan, May 12-19, 2009, 2009, clmc (inproceedings)

Abstract
We provide a general approach for learning robotic motor skills from human demonstration. To represent an observed movement, a non-linear differential equation is learned such that it reproduces this movement. Based on this representation, we build a library of movements by labeling each recorded movement according to task and context (e.g., grasping, placing, and releasing). Our differential equation is formulated such that generalization can be achieved simply by adapting a start and a goal parameter in the equation to the desired position values of a movement. For object manipulation, we present how our framework extends to the control of gripper orientation and finger position. The feasibility of our approach is demonstrated in simulation as well as on a real robot. The robot learned a pick-and-place operation and a water-serving task and could generalize these tasks to novel situations.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Compliant quadruped locomotion over rough terrain

Buchli, J., Kalakrishnan, M., Mistry, M., Pastor, P., Schaal, S.

In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages: 814-820, 2009, clmc (inproceedings)

Abstract
Many critical elements for statically stable walking for legged robots have been known for a long time, including stability criteria based on support polygons, good foothold selection, recovery strategies to name a few. All these criteria have to be accounted for in the planning as well as the control phase. Most legged robots usually employ high gain position control, which means that it is crucially important that the planned reference trajectories are a good match for the actual terrain, and that tracking is accurate. Such an approach leads to conservative controllers, i.e. relatively low speed, ground speed matching, etc. Not surprisingly such controllers are not very robust - they are not suited for the real world use outside of the laboratory where the knowledge of the world is limited and error prone. Thus, to achieve robust robotic locomotion in the archetypical domain of legged systems, namely complex rough terrain, where the size of the obstacles are in the order of leg length, additional elements are required. A possible solution to improve the robustness of legged locomotion is to maximize the compliance of the controller. While compliance is trivially achieved by reduced feedback gains, for terrain requiring precise foot placement (e.g. climbing rocks, walking over pegs or cracks) compliance cannot be introduced at the cost of inferior tracking. Thus, model-based control and - in contrast to passive dynamic walkers - active balance control is required. To achieve these objectives, in this paper we add two crucial elements to legged locomotion, i.e., floating-base inverse dynamics control and predictive force control, and we show that these elements increase robustness in face of unknown and unanticipated perturbations (e.g. obstacles). Furthermore, we introduce a novel line-based COG trajectory planner, which yields a simpler algorithm than traditional polygon based methods and creates the appropriate input to our control system.We show results from bot- h simulation and real world of a robotic dog walking over non-perceived obstacles and rocky terrain. The results prove the effectivity of the inverse dynamics/force controller. The presented results show that we have all elements needed for robust all-terrain locomotion, which should also generalize to other legged systems, e.g., humanoid robots.

am

link (url) [BibTex]

link (url) [BibTex]


Thumb xl cmbe
Level Set Based Automatic Segmentation of Human Aorta

Si Yong Yeo, Xianghua Xie, Igor Sazonov, Perumal Nithiarasu

In International Conference on Computational & Mathematical Biomedical Engineering, pages: 242-245, 2009 (inproceedings)

ps

[BibTex]

[BibTex]


Thumb xl orthonormaity
In Defense of Orthonormality Constraints for Nonrigid Structure from Motion

Akhter, I., Sheikh, Y., Khan, S.

In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages: 2447-2453, 2009 (inproceedings)

Abstract
In factorization approaches to nonrigid structure from motion, the 3D shape of a deforming object is usually modeled as a linear combination of a small number of basis shapes. The original approach to simultaneously estimate the shape basis and nonrigid structure exploited orthonormality constraints for metric rectification. Recently, it has been asserted that structure recovery through orthonormality constraints alone is inherently ambiguous and cannot result in a unique solution. This assertion has been accepted as conventional wisdom and is the justification of many remedial heuristics in literature. Our key contribution is to prove that orthonormality constraints are in fact sufficient to recover the 3D structure from image observations alone. We characterize the true nature of the ambiguity in using orthonormality constraints for the shape basis and show that it has no impact on structure reconstruction. We conclude from our experimentation that the primary challenge in using shape basis for nonrigid structure from motion is the difficulty in the optimization problem rather than the ambiguity in orthonormality constraints.

ps

pdf [BibTex]

pdf [BibTex]


no image
Dynamic distortion correction for endoscopy systems with exchangeable optics

Stehle, T., Hennes, M., Gross, S., Behrens, A., Wulff, J., Aach, T.

In Bildverarbeitung für die Medizin 2009, pages: 142-146, Springer Berlin Heidelberg, 2009 (inproceedings)

Abstract
Endoscopic images are strongly affected by lens distortion caused by the use of wide angle lenses. In case of endoscopy systems with exchangeable optics, e.g. in bladder endoscopy or sinus endoscopy, the camera sensor and the optics do not form a rigid system but they can be shifted and rotated with respect to each other during an examination. This flexibility has a major impact on the location of the distortion centre as it is moved along with the optics. In this paper, we describe an algorithm for the dynamic correction of lens distortion in cystoscopy which is based on a one time calibration. For the compensation, we combine a conventional static method for distortion correction with an algorithm to detect the position and the orientation of the elliptic field of view. This enables us to estimate the position of the distortion centre according to the relative movement of camera and optics. Therewith, a distortion correction for arbitrary rotation angles and shifts becomes possible without performing static calibrations for every possible combination of shifts and angles beforehand.

ps

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Computational mechanisms for the recognition of time sequences of images in the visual cortex

Tan, C., Jhuang, H., Singer, J., Serre, T., Sheinberg, D., Poggio, T.

Society for Neuroscience, 2009 (conference)

ps

pdf [BibTex]

pdf [BibTex]


Thumb xl vriphys2009
Interactive Inverse Kinematics for Monocular Motion Estimation

Morten Engell-Norregaard, Soren Hauberg, Jerome Lapuyade, Kenny Erleben, Kim S. Pedersen

In The 6th Workshop on Virtual Reality Interaction and Physical Simulation (VRIPHYS), 2009 (inproceedings)

ps

Conference site Paper site [BibTex]

Conference site Paper site [BibTex]


Thumb xl thumb screen shot 2012 10 06 at 12.17.40 pm
A Comprehensive Grasp Taxonomy

Feix, T., Pawlik, R., Schmiedmayer, H., Romero, J., Kragic, D.

In Robotics, Science and Systems: Workshop on Understanding the Human Hand for Advancing Robotic Manipulation, 2009 (inproceedings)

ps

Pdf [BibTex]

Pdf [BibTex]


no image
Population coding of ground truth motion in natural scenes in the early visual system

Stanley, G., Black, M. J., Lewis, J., Desbordes, G., Jin, J., Alonso, J.

COSYNE, 2009 (conference)

ps

[BibTex]

[BibTex]


no image
Inertial parameter estimation of floating-base humanoid systems using partial force sensing

Mistry, M., Schaal, S., Yamane, K.

In IEEE-RAS International Conference on Humanoid Robots (Humanoids 2009), Paris, Dec.7-10, 2009, clmc (inproceedings)

Abstract
Recently, several controllers have been proposed for humanoid robots which rely on full-body dynamic models. The estimation of inertial parameters from data is a critical component for obtaining accurate models for control. However, floating base systems, such as humanoid robots, incur added challenges to this task (e.g. contact forces must be measured, contact states can change, etc.) In this work, we outline a theoretical framework for whole body inertial parameter estimation, including the unactuated floating base. Using a least squares minimization approach, conducted within the nullspace of unmeasured degrees of freedom, we are able to use a partial force sensor set for full-body estimation, e.g. using only joint torque sensors, allowing for estimation when contact force measurement is unavailable or unreliable (e.g. due to slipping, rolling contacts, etc.). We also propose how to determine the theoretical minimum force sensor set for full body estimation, and discuss the practical limitations of doing so.

am

link (url) [BibTex]

link (url) [BibTex]


Thumb xl miua1
Segmentation of Human Upper Airway Using a Level Set Based Deformable Model

Si Yong Yeo, Xianghua Xie, Igor Sazonov, Perumal Nithiarasu

In The 13th Medical Image Understanding and Analysis, 2009 (inproceedings)

ps

[BibTex]

[BibTex]


Thumb xl emmcvpr2009
Three Dimensional Monocular Human Motion Analysis in End-Effector Space

Soren Hauberg, Jerome Lapuyade, Morten Engell-Norregaard, Kenny Erleben, Kim S. Pedersen

In Energy Minimization Methods in Computer Vision and Pattern Recognition, 5681, pages: 235-248, Lecture Notes in Computer Science, (Editors: Cremers, Daniel and Boykov, Yuri and Blake, Andrew and Schmidt, Frank), Springer Berlin Heidelberg, 2009 (inproceedings)

ps

Publishers site Paper site PDF [BibTex]

Publishers site Paper site PDF [BibTex]


no image
Decoding visual motion from correlated firing of thalamic neurons

Stanley, G. B., Black, M. J., Desbordes, G., Jin, J., Wang, Y., Alonso, J.

2009 Abstract Viewer and Itinerary Planner. Society for Neuroscience, Society for Neuroscience, 2009 (conference)

ps

[BibTex]

[BibTex]

2008


Thumb xl learningflow
Learning Optical Flow

Sun, D., Roth, S., Lewis, J., Black, M. J.

In European Conf. on Computer Vision, ECCV, 5304, pages: 83-97, LNCS, (Editors: Forsyth, D. and Torr, P. and Zisserman, A.), Springer-Verlag, October 2008 (inproceedings)

Abstract
Assumptions of brightness constancy and spatial smoothness underlie most optical flow estimation methods. In contrast to standard heuristic formulations, we learn a statistical model of both brightness constancy error and the spatial properties of optical flow using image sequences with associated ground truth flow fields. The result is a complete probabilistic model of optical flow. Specifically, the ground truth enables us to model how the assumption of brightness constancy is violated in naturalistic sequences, resulting in a probabilistic model of "brightness inconstancy". We also generalize previous high-order constancy assumptions, such as gradient constancy, by modeling the constancy of responses to various linear filters in a high-order random field framework. These filters are free variables that can be learned from training data. Additionally we study the spatial structure of the optical flow and how motion boundaries are related to image intensity boundaries. Spatial smoothness is modeled using a Steerable Random Field, where spatial derivatives of the optical flow are steered by the image brightness structure. These models provide a statistical motivation for previous methods and enable the learning of all parameters from training data. All proposed models are quantitatively compared on the Middlebury flow dataset.

ps

pdf Springerlink version [BibTex]

2008


pdf Springerlink version [BibTex]


no image
Probabilistic Roadmap Method and Real Time Gait Changing Technique Implementation for Travel Time Optimization on a Designed Six-legged Robot

Ahmad, A., Dhang, N.

In pages: 1-5, 39th International Symposium on Robotics (ISR), October 2008 (inproceedings)

Abstract
This paper presents design and development of a six legged robot with a total of 12 degrees of freedom, two in each limb and then an implementation of 'obstacle and undulated terrain-based' probabilistic roadmap method for motion planning of this hexaped which is able to negotiate large undulations as obstacles. The novelty in this implementation is that, it doesnt require the complete view of the robot's configuration space at any given time during the traversal. It generates a map of the area that is in visibility range and finds the best suitable point in that field of view to make it as the next node of the algorithm. A particular category of undulations which are small enough are automatically 'run-over' as a part of the terrain and not considered as obstacles. The traversal between the nodes is optimized by taking the shortest path and the most optimum gait at that instance which the hexaped can assume. This is again a novel approach to have a real time gait changing technique to optimize the travel time. The hexaped limb can swing in the robot's X-Y plane and the lower link of the limb can move in robot's Z plane by an implementation of a four-bar mechanism. A GUI based server 'Yellow Ladybird' eventually which is the name of the hexaped, is made for real time monitoring and communicating to it the final destination co-ordinates.

ps

link (url) [BibTex]


Thumb xl eccv08
The naked truth: Estimating body shape under clothing,

Balan, A., Black, M. J.

In European Conf. on Computer Vision, ECCV, 5304, pages: 15-29, LNCS, (Editors: D. Forsyth and P. Torr and A. Zisserman), Springer-Verlag, Marseilles, France, October 2008 (inproceedings)

Abstract
We propose a method to estimate the detailed 3D shape of a person from images of that person wearing clothing. The approach exploits a model of human body shapes that is learned from a database of over 2000 range scans. We show that the parameters of this shape model can be recovered independently of body pose. We further propose a generalization of the visual hull to account for the fact that observed silhouettes of clothed people do not provide a tight bound on the true 3D shape. With clothed subjects, different poses provide different constraints on the possible underlying 3D body shape. We consequently combine constraints across pose to more accurately estimate 3D body shape in the presence of occluding clothing. Finally we use the recovered 3D shape to estimate the gender of subjects and then employ gender-specific body models to refine our shape estimates. Results on a novel database of thousands of images of clothed and "naked" subjects, as well as sequences from the HumanEva dataset, suggest the method may be accurate enough for biometric shape analysis in video.

ps

pdf pdf with higher quality images Springerlink version YouTube video on applications data slides [BibTex]

pdf pdf with higher quality images Springerlink version YouTube video on applications data slides [BibTex]


Thumb xl thumb screen shot 2012 10 06 at 12.23.39 pm
Dynamic time warping for binocular hand tracking and reconstruction

Romero, J., Kragic, D., Kyrki, V., Argyros, A.

In IEEE International Conference on Robotics and Automation,ICRA, pages: 2289 -2294, May 2008 (inproceedings)

ps

Pdf [BibTex]

Pdf [BibTex]


no image
Human movement generation based on convergent flow fields: A computational model and a behavioral experiment

Hoffmann, H., Schaal, S.

In Advances in Computational Motor Control VII, Symposium at the Society for Neuroscience Meeting, Washington DC, 2008, 2008, clmc (inproceedings)

am

link (url) [BibTex]

link (url) [BibTex]


Thumb xl thumb screen shot 2012 10 06 at 12.28.24 pm
Simultaneous Visual Recognition of Manipulation Actions and Manipulated Objects

Kjellström, H., Romero, J., Martinez, D., Kragic, D.

In European Conference on Computer Vision, ECCV, pages: 336-349, 2008 (inproceedings)

ps

Pdf [BibTex]

Pdf [BibTex]


no image
Tuning analysis of motor cortical neurons in a person with paralysis during performance of visually instructed cursor control tasks

Kim, S., Simeral, J. D., Hochberg, L. R., Truccolo, W., Donoghue, J., Friehs, G. M., Black, M. J.

2008 Abstract Viewer and Itinerary Planner, Society for Neuroscience, Washington, DC, 2008, Online (conference)

ps

[BibTex]

[BibTex]


no image
Movement reproduction and obstacle avoidance with dynamic movement primitives and potential fields

Park, D., Hoffmann, H., Pastor, P., Schaal, S.

In IEEE International Conference on Humanoid Robots, 2008., 2008, clmc (inproceedings)

am

PDF [BibTex]

PDF [BibTex]


Thumb xl screen shot 2012 06 06 at 11.28.04 am
Infinite Kernel Learning

Gehler, P., Nowozin, S.

In Proceedings of NIPS 2008 Workshop on "Kernel Learning: Automatic Selection of Optimal Kernels", 2008 (inproceedings)

ps

project page pdf [BibTex]

project page pdf [BibTex]


Thumb xl thumb screen shot 2012 10 06 at 12.29.08 pm
Visual Recognition of Grasps for Human-to-Robot Mapping

Kjellström, H., Romero, J., Kragic, D.

In IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, pages: 3192-3199, 2008 (inproceedings)

ps

Pdf [BibTex]

Pdf [BibTex]


no image
More than two years of intracortically-based cursor control via a neural interface system

Hochberg, L. R., Simeral, J. D., Kim, S., Stein, J., Friehs, G. M., Black, M. J., Donoghue, J. P.

2008 Abstract Viewer and Itinerary Planner, Society for Neuroscience, Washington, DC, 2008, Online (conference)

ps

[BibTex]

[BibTex]


no image
The dual role of uncertainty in force field learning

Mistry, M., Theodorou, E., Hoffmann, H., Schaal, S.

In Abstracts of the Eighteenth Annual Meeting of Neural Control of Movement (NCM), Naples, Florida, April 29-May 4, 2008, clmc (inproceedings)

Abstract
Force field experiments have been a successful paradigm for studying the principles of planning, execution, and learning in human arm movements. Subjects have been shown to cope with the disturbances generated by force fields by learning internal models of the underlying dynamics to predict disturbance effects or by increasing arm impedance (via co-contraction) if a predictive approach becomes infeasible. Several studies have addressed the issue uncertainty in force field learning. Scheidt et al. demonstrated that subjects exposed to a viscous force field of fixed structure but varying strength (randomly changing from trial to trial), learn to adapt to the mean disturbance, regardless of the statistical distribution. Takahashi et al. additionally show a decrease in strength of after-effects after learning in the randomly varying environment. Thus they suggest that the nervous system adopts a dual strategy: learning an internal model of the mean of the random environment, while simultaneously increasing arm impedance to minimize the consequence of errors. In this study, we examine what role variance plays in the learning of uncertain force fields. We use a 7 degree-of-freedom exoskeleton robot as a manipulandum (Sarcos Master Arm, Sarcos, Inc.), and apply a 3D viscous force field of fixed structure and strength randomly selected from trial to trial. Additionally, in separate blocks of trials, we alter the variance of the randomly selected strength multiplier (while keeping a constant mean). In each block, after sufficient learning has occurred, we apply catch trials with no force field and measure the strength of after-effects. As expected in higher variance cases, results show increasingly smaller levels of after-effects as the variance is increased, thus implying subjects choose the robust strategy of increasing arm impedance to cope with higher levels of uncertainty. Interestingly, however, subjects show an increase in after-effect strength with a small amount of variance as compared to the deterministic (zero variance) case. This result implies that a small amount of variability aides in internal model formation, presumably a consequence of the additional amount of exploration conducted in the workspace of the task.

am

[BibTex]

[BibTex]


no image
Dynamic movement primitives for movement generation motivated by convergent force fields in frog

Hoffmann, H., Pastor, P., Schaal, S.

In Adaptive Motion of Animals and Machines (AMAM), 2008, clmc (inproceedings)

am

PDF [BibTex]

PDF [BibTex]