Header logo is


2011


Thumb xl teaser iccv2011
Outdoor Human Motion Capture using Inverse Kinematics and von Mises-Fisher Sampling

Pons-Moll, G., Baak, A., Gall, J., Leal-Taixe, L., Mueller, M., Seidel, H., Rosenhahn, B.

In IEEE International Conference on Computer Vision (ICCV), pages: 1243-1250, November 2011 (inproceedings)

ps

project page pdf supplemental [BibTex]

2011


project page pdf supplemental [BibTex]


Thumb xl iccv2011homepageimage notext small
Home 3D body scans from noisy image and range data

Weiss, A., Hirshberg, D., Black, M.

In Int. Conf. on Computer Vision (ICCV), pages: 1951-1958, IEEE, Barcelona, November 2011 (inproceedings)

Abstract
The 3D shape of the human body is useful for applications in fitness, games and apparel. Accurate body scanners, however, are expensive, limiting the availability of 3D body models. We present a method for human shape reconstruction from noisy monocular image and range data using a single inexpensive commodity sensor. The approach combines low-resolution image silhouettes with coarse range data to estimate a parametric model of the body. Accurate 3D shape estimates are obtained by combining multiple monocular views of a person moving in front of the sensor. To cope with varying body pose, we use a SCAPE body model which factors 3D body shape and pose variations. This enables the estimation of a single consistent shape while allowing pose to vary. Additionally, we describe a novel method to minimize the distance between the projected 3D body contour and the image silhouette that uses analytic derivatives of the objective function. We propose a simple method to estimate standard body measurements from the recovered SCAPE model and show that the accuracy of our method is competitive with commercial body scanning systems costing orders of magnitude more.

ps

pdf YouTube poster Project Page Project Page [BibTex]

pdf YouTube poster Project Page Project Page [BibTex]


Thumb xl iccv2012
Means in spaces of tree-like shapes

Aasa Feragen, Soren Hauberg, Mads Nielsen, Francois Lauze

In Computer Vision (ICCV), 2011 IEEE International Conference on, pages: 736 -746, IEEE, november 2011 (inproceedings)

ps

Publishers site PDF Suppl. material [BibTex]

Publishers site PDF Suppl. material [BibTex]


Thumb xl teaser iccvw
Everybody needs somebody: modeling social and grouping behavior on a linear programming multiple people tracker

Leal-Taixé, L., Rosenhahn, G. P. A. B.

In IEEE International Conference on Computer Vision Workshops (IICCVW), November 2011 (inproceedings)

ps

project page pdf [BibTex]

project page pdf [BibTex]


Thumb xl lugano11small
Evaluating the Automated Alignment of 3D Human Body Scans

Hirshberg, D. A., Loper, M., Rachlin, E., Tsoli, A., Weiss, A., Corner, B., Black, M. J.

In 2nd International Conference on 3D Body Scanning Technologies, pages: 76-86, (Editors: D’Apuzzo, Nicola), Hometrica Consulting, Lugano, Switzerland, October 2011 (inproceedings)

Abstract
The statistical analysis of large corpora of human body scans requires that these scans be in alignment, either for a small set of key landmarks or densely for all the vertices in the scan. Existing techniques tend to rely on hand-placed landmarks or algorithms that extract landmarks from scans. The former is time consuming and subjective while the latter is error prone. Here we show that a model-based approach can align meshes automatically, producing alignment accuracy similar to that of previous methods that rely on many landmarks. Specifically, we align a low-resolution, artist-created template body mesh to many high-resolution laser scans. Our alignment procedure employs a robust iterative closest point method with a regularization that promotes smooth and locally rigid deformation of the template mesh. We evaluate our approach on 50 female body models from the CAESAR dataset that vary significantly in body shape. To make the method fully automatic, we define simple feature detectors for the head and ankles, which provide initial landmark locations. We find that, if body poses are fairly similar, as in CAESAR, the fully automated method provides dense alignments that enable statistical analysis and anthropometric measurement.

ps

pdf slides DOI Project Page [BibTex]

pdf slides DOI Project Page [BibTex]


Thumb xl mt
Branch&Rank: Non-Linear Object Detection

(Best Impact Paper Prize)

Lehmann, A., Gehler, P., VanGool, L.

In Proceedings of the British Machine Vision Conference (BMVC), pages: 8.1-8.11, (Editors: Jesse Hoey and Stephen McKenna and Emanuele Trucco), BMVA Press, September 2011, http://dx.doi.org/10.5244/C.25.8 (inproceedings)

ps

video of talk pdf slides supplementary [BibTex]

video of talk pdf slides supplementary [BibTex]


Thumb xl teaser dagm2011
Efficient and Robust Shape Matching for Model Based Human Motion Capture

Pons-Moll, G., Leal-Taixé, L., Truong, T., Rosenhahn, B.

In German Conference on Pattern Recognition (GCPR), pages: 416-425, September 2011 (inproceedings)

ps

project page pdf [BibTex]

project page pdf [BibTex]


no image
BrainGate pilot clinical trials: Progress in translating neural engineering principles to clinical testing

Hochberg, L., Simeral, J., Black, M., Bacher, D., Barefoot, L., Berhanu, E., Borton, D., Cash, S., Feldman, J., Gallivan, E., Homer, M., Jarosiewicz, B., King, B., Liu, J., Malik, W., Masse, N., Perge, J., Rosler, D., Schmansky, N., Travers, B., Truccolo, W., Nurmikko, A., Donoghue, J.

33rd Annual International IEEE EMBS Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, August 2011 (conference)

ps

[BibTex]

[BibTex]


Thumb xl screen shot 2012 02 23 at 09.35.10
Learning Output Kernels with Block Coordinate Descent

Dinuzzo, F., Ong, C. S., Gehler, P., Pillonetto, G.

In Proceedings of the 28th International Conference on Machine Learning (ICML-11), pages: 49-56, ICML ’11, (Editors: Getoor, Lise and Scheffer, Tobias), ACM, New York, NY, USA, ICML, June 2011 (inproceedings)

ei ps

data+code pdf [BibTex]

data+code pdf [BibTex]


Thumb xl kthexecution
Mind the gap - robotic grasping under incomplete observation

Bohg, J., Johnson-Roberson, M., Leon, B., Felip, J., Gratal, X., Bergstrom, N., Kragic, D., Morales, A.

In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages: 686-693, May 2011 (inproceedings)

Abstract
We consider the problem of grasp and manipulation planning when the state of the world is only partially observable. Specifically, we address the task of picking up unknown objects from a table top. The proposed approach to object shape prediction aims at closing the knowledge gaps in the robot's understanding of the world. A completed state estimate of the environment can then be provided to a simulator in which stable grasps and collision-free movements are planned. The proposed approach is based on the observation that many objects commonly in use in a service robotic scenario possess symmetries. We search for the optimal parameters of these symmetries given visibility constraints. Once found, the point cloud is completed and a surface mesh reconstructed. Quantitative experiments show that the predictions are valid approximations of the real object shape. By demonstrating the approach on two very different robotic platforms its generality is emphasized.

am

pdf video code data DOI Project Page [BibTex]

pdf video code data DOI Project Page [BibTex]


Thumb xl jampani11 spie
Role of expertise and contralateral symmetry in the diagnosis of pneumoconiosis: an experimental study

Jampani, V., Vaidya, V., Sivaswamy, J., Tourani, K. L.

In Proc. SPIE 7966, Medical Imaging: Image Perception, Observer Performance, and Technology Assessment, 2011, Florida, March 2011 (inproceedings)

Abstract
Pneumoconiosis, a lung disease caused by the inhalation of dust, is mainly diagnosed using chest radiographs. The effects of using contralateral symmetric (CS) information present in chest radiographs in the diagnosis of pneumoconiosis are studied using an eye tracking experimental study. The role of expertise and the influence of CS information on the performance of readers with different expertise level are also of interest. Experimental subjects ranging from novices & medical students to staff radiologists were presented with 17 double and 16 single lung images, and were asked to give profusion ratings for each lung zone. Eye movements and the time for their diagnosis were also recorded. Kruskal-Wallis test (χ2(6) = 13.38, p = .038), showed that the observer error (average sum of absolute differences) in double lung images differed significantly across the different expertise categories when considering all the participants. Wilcoxon-signed rank test indicated that the observer error was significantly higher for single-lung images (Z = 3.13, p < .001) than for the double-lung images for all the participants. Mann-Whitney test (U = 28, p = .038) showed that the differential error between single and double lung images is significantly higher in doctors [staff & residents] than in non-doctors [others]. Thus, Expertise & CS information plays a significant role in the diagnosis of pneumoconiosis. CS information helps in diagnosing pneumoconiosis by reducing the general tendency of giving less profusion ratings. Training and experience appear to play important roles in learning to use the CS information present in the chest radiographs.

ps

url link (url) [BibTex]

url link (url) [BibTex]


no image
STOMP: Stochastic trajectory optimization for motion planning

Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., Schaal, S.

In IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13, 2011, clmc (inproceedings)

Abstract
We present a new approach to motion planning using a stochastic trajectory optimization framework. The approach relies on generating noisy trajectories to explore the space around an initial (possibly infeasible) trajectory, which are then combined to produced an updated trajectory with lower cost. A cost function based on a combination of obstacle and smoothness cost is optimized in each iteration. No gradient information is required for the particular optimization algorithm that we use and so general costs for which derivatives may not be available (e.g. costs corresponding to constraints and motor torques) can be included in the cost function. We demonstrate the approach both in simulation and on a dual-arm mobile manipulation system for unconstrained and constrained tasks. We experimentally show that the stochastic nature of STOMP allows it to overcome local minima that gradient-based optimizers like CHOMP can get stuck in.

am

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Thumb xl problem
Recovering Intrinsic Images with a Global Sparsity Prior on Reflectance

Gehler, P., Rother, C., Kiefel, M., Zhang, L., Schölkopf, B.

In Advances in Neural Information Processing Systems 24, pages: 765-773, (Editors: Shawe-Taylor, John and Zemel, Richard S. and Bartlett, Peter L. and Pereira, Fernando C. N. and Weinberger, Kilian Q.), Curran Associates, Inc., Red Hook, NY, USA, Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
We address the challenging task of decoupling material properties from lighting properties given a single image. In the last two decades virtually all works have concentrated on exploiting edge information to address this problem. We take a different route by introducing a new prior on reflectance, that models reflectance values as being drawn from a sparse set of basis colors. This results in a Random Field model with global, latent variables (basis colors) and pixel-accurate output reflectance values. We show that without edge information high-quality results can be achieved, that are on par with methods exploiting this source of information. Finally, we are able to improve on state-of-the-art results by integrating edge information into our model. We believe that our new approach is an excellent starting point for future developments in this field.

ei ps

website + code pdf poster Project Page Project Page [BibTex]

website + code pdf poster Project Page Project Page [BibTex]


no image
An Experimental Demonstration of a Distributed and Event-based State Estimation Algorithm

(Best Interactive Paper Award (top out of 450))

Trimpe, S., D’Andrea, R.

In Proceedings of the 18th IFAC World Congress, 2011 (inproceedings)

am ics

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Path Integral Control and Bounded Rationality

Braun, D. A., Ortega, P. A., Theodorou, E., Schaal, S.

In IEEE Symposium on Adaptive Dynamic Programming And Reinforcement Learning (ADPRL), 2011, clmc (inproceedings)

Abstract
Path integral methods [7], [15],[1] have recently been shown to be applicable to a very general class of optimal control problems. Here we examine the path integral formalism from a decision-theoretic point of view, since an optimal controller can always be regarded as an instance of a perfectly rational decision-maker that chooses its actions so as to maximize its expected utility [8]. The problem with perfect rationality is, however, that finding optimal actions is often very difficult due to prohibitive computational resource costs that are not taken into account. In contrast, a bounded rational decision-maker has only limited resources and therefore needs to strike some compromise between the desired utility and the required resource costs [14]. In particular, we suggest an information-theoretic measure of resource costs that can be derived axiomatically [11]. As a consequence we obtain a variational principle for choice probabilities that trades off maximizing a given utility criterion and avoiding resource costs that arise due to deviating from initially given default choice probabilities. The resulting bounded rational policies are in general probabilistic. We show that the solutions found by the path integral formalism are such bounded rational policies. Furthermore, we show that the same formalism generalizes to discrete control problems, leading to linearly solvable bounded rational control policies in the case of Markov systems. Importantly, Bellman?s optimality principle is not presupposed by this variational principle, but it can be derived as a limit case. This suggests that the information- theoretic formalization of bounded rationality might serve as a general principle in control design that unifies a number of recently reported approximate optimal control methods both in the continuous and discrete domain.

am

PDF [BibTex]

PDF [BibTex]


no image
Skill learning and task outcome prediction for manipulation

Pastor, P., Kalakrishnan, M., Chitta, S., Theodorou, E., Schaal, S.

In IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13, 2011, clmc (inproceedings)

Abstract
Learning complex motor skills for real world tasks is a hard problem in robotic manipulation that often requires painstaking manual tuning and design by a human expert. In this work, we present a Reinforcement Learning based approach to acquiring new motor skills from demonstration. Our approach allows the robot to learn fine manipulation skills and significantly improve its success rate and skill level starting from a possibly coarse demonstration. Our approach aims to incorporate task domain knowledge, where appropriate, by working in a space consistent with the constraints of a specific task. In addition, we also present an approach to using sensor feedback to learn a predictive model of the task outcome. This allows our system to learn the proprioceptive sensor feedback needed to monitor subsequent executions of the task online and abort execution in the event of predicted failure. We illustrate our approach using two example tasks executed with the PR2 dual-arm robot: a straight and accurate pool stroke and a box flipping task using two chopsticks as tools.

am

link (url) Project Page Project Page [BibTex]

link (url) Project Page Project Page [BibTex]


no image
An Iterative Path Integral Stochastic Optimal Control Approach for Learning Robotic Tasks

Theodorou, E., Stulp, F., Buchli, J., Schaal, S.

In Proceedings of the 18th World Congress of the International Federation of Automatic Control, 2011, clmc (inproceedings)

Abstract
Recent work on path integral stochastic optimal control theory Theodorou et al. (2010a); Theodorou (2011) has shown promising results in planning and control of nonlinear systems in high dimensional state spaces. The path integral control framework relies on the transformation of the nonlinear Hamilton Jacobi Bellman (HJB) partial differential equation (PDE) into a linear PDE and the approximation of its solution via the use of the Feynman Kac lemma. In this work, we are reviewing the generalized version of path integral stochastic optimal control formalism Theodorou et al. (2010a), used for optimal control and planing of stochastic dynamical systems with state dependent control and diffusion matrices. Moreover we present the iterative path integral control approach, the so called Policy Improvement with Path Integrals or (PI2 ) which is capable of scaling in high dimensional robotic control problems. Furthermore we present a convergence analysis of the proposed algorithm and we apply the proposed framework to a variety of robotic tasks. Finally with the goal to perform locomotion the iterative path integral control is applied for learning nonlinear limit cycle attractors with adjustable land scape.

am

PDF [BibTex]

PDF [BibTex]


Thumb xl multi modal 2
Enhanced visual scene understanding through human-robot dialog

Johnson-Roberson, M., Bohg, J., Skantze, G., Gustafson, J., Carlson, R., Rasolzadeh, B., Kragic, D.

In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, pages: 3342-3348, 2011 (inproceedings)

Abstract
We propose a novel human-robot-interaction framework for robust visual scene understanding. Without any a-priori knowledge about the objects, the task of the robot is to correctly enumerate how many of them are in the scene and segment them from the background. Our approach builds on top of state-of-the-art computer vision methods, generating object hypotheses through segmentation. This process is combined with a natural dialog system, thus including a `human in the loop' where, by exploiting the natural conversation of an advanced dialog system, the robot gains knowledge about ambiguous situations. We present an entropy-based system allowing the robot to detect the poorest object hypotheses and query the user for arbitration. Based on the information obtained from the human-robot dialog, the scene segmentation can be re-seeded and thereby improved. We present experimental results on real data that show an improved segmentation performance compared to segmentation without interaction.

am

pdf video DOI Project Page [BibTex]

pdf video DOI Project Page [BibTex]


Thumb xl battery2
Risk and gain battery management for self-docking mobile robots

Berenz, V., Suzuki, K.

In Robotics and Biomimetics (ROBIO), 2011 IEEE International Conference on, pages: 1766-1771, 2011 (inproceedings)

am

DOI [BibTex]

DOI [BibTex]


no image
Reduced Communication State Estimation for Control of an Unstable Networked Control System

Trimpe, S., D’Andrea, R.

In Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, 2011 (inproceedings)

am ics

PDF Supplementary material DOI [BibTex]

PDF Supplementary material DOI [BibTex]


no image
Neuromuscular Stochastic Optimal Control of a Tendon Driven Index Finger

Theodorou, E. A., Todorov, E., Valero-Cuevas, F.

In Proceedings of American Control Conference (ACC), 2011, clmc (inproceedings)

Abstract
With the goal to build robotic hands which can reach the levels of dexterity and robustness of the hand, the question of what are the candidate control principles that can handle the nonlinearities, the high dimensionality and the internal noise of biomechanical structures of the complexity of the hand, is still open. In this work we present the first stochastic optimal feedback controller applied to a full tendon driven simulated robotic index finger. In our model we do take into account the full tendon structure of the index finger which consist of 11 tendons based on the underlying physiology and we consider muscle with the typical force - length and force velocity properties. Our feedback controller show robustness against noise and perturbation of the dynamics while it can also successfully handle the nonlinearities and high dimensionality of the robotic index finger. Furthermore as it is shown in the evaluations, it provides the complete time history of the tendon excursions and the tendon velocities of the index finger for the tasks of tapping with zero and nonzero terminal velocities.

am

PDF [BibTex]

PDF [BibTex]


Thumb xl nao3
TDM: A software framework for elegant and rapid development of autonomous behaviors for humanoid robots.

Berenz, V., Tanaka, F., Suzuki, K., Herink, M.

In Humanoids, pages: 179-186, IEEE, 2011 (inproceedings)

am

link (url) [BibTex]

link (url) [BibTex]


Thumb xl training
Coaching robot behavior using continuous physiological affective feedback

Gruebler, A., Berenz, V., Suzuki, K.

In 11th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2011), Bled, Slovenia, October 26-28, 2011, pages: 466-471, 2011 (inproceedings)

am

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl openbiosafetylab  a virtual world based biosafety training application for medical students
OpenBioSafetyLab: A virtual world based biosafety training application for medical students

Nakasone, A., Tang, S., Shigematsu, M., Heinecke, B., Fujimoto, S., Prendinger, H.

In International Conference on Information Technology: New Generations (ITNG), IEEE CPS, 2011 (inproceedings)

ps

PDF [BibTex]

PDF [BibTex]


Thumb xl fosterembs2011
Combining wireless neural recording and video capture for the analysis of natural gait

Foster, J., Freifeld, O., Nuyujukian, P., Ryu, S., Black, M. J., Shenoy, K.

In Proc. 5th Int. IEEE EMBS Conf. on Neural Engineering, pages: 613-616, IEEE, 2011 (inproceedings)

ps

pdf Project Page [BibTex]

pdf Project Page [BibTex]


no image
Automated Control of AFM Based Nanomanipulation

Xie, H., Onal, C., Régnier, S., Sitti, M.

In Atomic Force Microscopy Based Nanorobotics, pages: 237-311, Springer Berlin Heidelberg, 2011 (incollection)

pi

[BibTex]

[BibTex]


no image
Design and analysis of a magnetically actuated and compliant capsule endoscopic robot

Yim, S., Sitti, M.

In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages: 4810-4815, 2011 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Micro-scale propulsion using multiple flexible artificial flagella

Singleton, J., Diller, E., Andersen, T., Regnier, S., Sitti, M.

In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, pages: 1687-1692, 2011 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Micro-assembly using optically controlled bubbles

Hu, W., Ishii, K. S., Ohta, A. T.

In Optical MEMS and Nanophotonics (OMN), 2011 International Conference on, pages: 53-54, 2011 (inproceedings)

pi

[BibTex]

[BibTex]


Thumb xl segmentation isbi11
Tagged Cardiac MR Image Segmentation Using Boundary & Regional-Support and Graph-based Deformable Priors

Xiang, B., Wang, C., Deux, J., Rahmouni, A., Paragios, N.

In IEEE International Symposium on Biomedical Imaging (ISBI), 2011 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


Thumb xl multi nrsfm
Multiview Structure from Motion in Trajectory Space

Zaheer, A., Akhter, I., Mohammad, H. B., Marzban, S., Khan, S.

In Computer Vision (ICCV), 2011 IEEE International Conference on, pages: 2447-2453, 2011 (inproceedings)

Abstract
Most nonrigid objects exhibit temporal regularities in their deformations. Recently it was proposed that these regularities can be parameterized by assuming that the non- rigid structure lies in a small dimensional trajectory space. In this paper, we propose a factorization approach for 3D reconstruction from multiple static cameras under the com- pact trajectory subspace representation. Proposed factor- ization is analogous to rank-3 factorization of rigid struc- ture from motion problem, in transformed space. The benefit of our approach is that the 3D trajectory basis can be directly learned from the image observations. This also allows us to impute missing observations and denoise tracking errors without explicit estimation of the 3D structure. In contrast to standard triangulation based methods which require points to be visible in at least two cameras, our ap- proach can reconstruct points, which remain occluded even in all the cameras for quite a long time. This makes our solution especially suitable for occlusion handling in motion capture systems. We demonstrate robustness of our method on challenging real and synthetic scenarios.

ps

pdf project page [BibTex]

pdf project page [BibTex]


Thumb xl scia2011
Unscented Kalman Filtering for Articulated Human Tracking

Anders Boesen Lindbo Larsen, Soren Hauberg, Kim S. Pedersen

In Image Analysis, 6688, pages: 228-237, Lecture Notes in Computer Science, (Editors: Heyden, Anders and Kahl, Fredrik), Springer Berlin Heidelberg, 2011 (inproceedings)

ps

Publishers site PDF [BibTex]

Publishers site PDF [BibTex]


no image
Adaptation for perception of the human body: Investigations of transfer across viewpoint and pose

Sekunova, A., Black, M. J., Parkinson, L., Barton, J. S.

Vision Sciences Society, 2011 (conference)

ps

[BibTex]

[BibTex]


Thumb xl icip1
Level Set Segmentation with Robust Image Gradient Energy and Statistical Shape Prior

Si Yong Yeo, Xianghua Xie, Igor Sazonov, Perumal Nithiarasu

In IEEE International Conference on Image Processing, pages: 3397 - 3400, 2011 (inproceedings)

Abstract
We propose a new level set segmentation method with statistical shape prior using a variational approach. The image energy is derived from a robust image gradient feature. This gives the active contour a global representation of the geometric configuration, making it more robust to image noise, weak edges and initial configurations. Statistical shape information is incorporated using nonparametric shape density distribution, which allows the model to handle relatively large shape variations. Comparative examples using both synthetic and real images show the robustness and efficiency of the proposed method.

ps

link (url) [BibTex]

link (url) [BibTex]


no image
Teleoperation Based AFM Manipulation Control

Xie, H., Onal, C., Régnier, S., Sitti, M.

In Atomic Force Microscopy Based Nanorobotics, pages: 145-235, Springer Berlin Heidelberg, 2011 (incollection)

pi

[BibTex]

[BibTex]


no image
Descriptions and challenges of AFM based nanorobotic systems

Xie, H., Onal, C., Régnier, S., Sitti, M.

In Atomic Force Microscopy Based Nanorobotics, pages: 13-29, Springer Berlin Heidelberg, 2011 (incollection)

pi

[BibTex]

[BibTex]


no image
Control of multiple heterogeneous magnetic micro-robots on non-specialized surfaces

Diller, E., Floyd, S., Pawashe, C., Sitti, M.

In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages: 115-120, 2011 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Tip based robotic precision micro/nanomanipulation systems

Onal, C., Sumer, B., Ozcan, O., Nain, A., Sitti, M.

In SPIE Defense, Security, and Sensing, pages: 80580M-80580M, 2011 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Design of a miniature integrated multi-modal jumping and gliding robot

Woodward, M. A., Sitti, M.

In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, pages: 556-561, 2011 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Movement segmentation using a primitive library

Meier, F., Theodorou, E., Stulp, F., Schaal, S.

In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011), Sept. 25-30, San Francisco, CA, 2011, clmc (inproceedings)

Abstract
Segmenting complex movements into a sequence of primitives remains a difficult problem with many applications in the robotics and vision communities. In this work, we show how the movement segmentation problem can be reduced to a sequential movement recognition problem. To this end, we reformulate the orig-inal Dynamic Movement Primitive (DMP) formulation as a linear dynamical sys-tem with control inputs. Based on this new formulation, we develop an Expecta-tion-Maximization algorithm to estimate the duration and goal position of a par-tially observed trajectory. With the help of this algorithm and the assumption that a library of movement primitives is present, we present a movement seg-mentation framework. We illustrate the usefulness of the new DMP formulation on the two applications of online movement recognition and movement segmen-tation.

am

link (url) [BibTex]

link (url) [BibTex]


Thumb xl cmbve1
Variational Level Set Segmentation Using Shape Prior

Si Yong Yeo, Xianghua Xie, Igor Sazonov, Perumal Nithiarasu

In International Conference on Mathematical and Computational Biomedical Engineering, 2011 (inproceedings)

ps

[BibTex]

[BibTex]


no image
Learning Force Control Policies for Compliant Manipulation

Kalakrishnan, M., Righetti, L., Pastor, P., Schaal, S.

In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 4639-4644, IEEE, San Francisco, USA, sep 2011 (inproceedings)

Abstract
Developing robots capable of fine manipulation skills is of major importance in order to build truly assistive robots. These robots need to be compliant in their actuation and control in order to operate safely in human environments. Manipulation tasks imply complex contact interactions with the external world, and involve reasoning about the forces and torques to be applied. Planning under contact conditions is usually impractical due to computational complexity, and a lack of precise dynamics models of the environment. We present an approach to acquiring manipulation skills on compliant robots through reinforcement learning. The initial position control policy for manipulation is initialized through kinesthetic demonstration. We augment this policy with a force/torque profile to be controlled in combination with the position trajectories. We use the Policy Improvement with Path Integrals (PI2) algorithm to learn these force/torque profiles by optimizing a cost function that measures task success. We demonstrate our approach on the Barrett WAM robot arm equipped with a 6-DOF force/torque sensor on two different manipulation tasks: opening a door with a lever door handle, and picking up a pen off the table. We show that the learnt force control policies allow successful, robust execution of the tasks.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Control of legged robots with optimal distribution of contact forces

Righetti, L., Buchli, J., Mistry, M., Schaal, S.

In 2011 11th IEEE-RAS International Conference on Humanoid Robots, pages: 318-324, IEEE, Bled, Slovenia, 2011 (inproceedings)

Abstract
The development of agile and safe humanoid robots require controllers that guarantee both high tracking performance and compliance with the environment. More specifically, the control of contact interaction is of crucial importance for robots that will actively interact with their environment. Model-based controllers such as inverse dynamics or operational space control are very appealing as they offer both high tracking performance and compliance. However, while widely used for fully actuated systems such as manipulators, they are not yet standard controllers for legged robots such as humanoids. Indeed such robots are fundamentally different from manipulators as they are underactuated due to their floating-base and subject to switching contact constraints. In this paper we present an inverse dynamics controller for legged robots that use torque redundancy to create an optimal distribution of contact constraints. The resulting controller is able to minimize, given a desired motion, any quadratic cost of the contact constraints at each instant of time. In particular we show how this can be used to minimize tangential forces during locomotion, therefore significantly improving the locomotion of legged robots on difficult terrains. In addition to the theoretical result, we present simulations of a humanoid and a quadruped robot, as well as experiments on a real quadruped robot that demonstrate the advantages of the controller.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Motion Primitive Goals for Robust Manipulation

Stulp, F., Theodorou, E., Kalakrishnan, M., Pastor, P., Righetti, L., Schaal, S.

In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 325-331, IEEE, San Francisco, USA, sep 2011 (inproceedings)

Abstract
Applying model-free reinforcement learning to manipulation remains challenging for several reasons. First, manipulation involves physical contact, which causes discontinuous cost functions. Second, in manipulation, the end-point of the movement must be chosen carefully, as it represents a grasp which must be adapted to the pose and shape of the object. Finally, there is uncertainty in the object pose, and even the most carefully planned movement may fail if the object is not at the expected position. To address these challenges we 1) present a simplified, computationally more efficient version of our model-free reinforcement learning algorithm PI2; 2) extend PI2 so that it simultaneously learns shape parameters and goal parameters of motion primitives; 3) use shape and goal learning to acquire motion primitives that are robust to object pose uncertainty. We evaluate these contributions on a manipulation platform consisting of a 7-DOF arm with a 4-DOF hand.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Inverse Dynamics Control of Floating-Base Robots with External Constraints: a Unified View

Righetti, L., Buchli, J., Mistry, M., Schaal, S.

In 2011 IEEE International Conference on Robotics and Automation, pages: 1085-1090, IEEE, Shanghai, China, 2011 (inproceedings)

Abstract
Inverse dynamics controllers and operational space controllers have proved to be very efficient for compliant control of fully actuated robots such as fixed base manipulators. However legged robots such as humanoids are inherently different as they are underactuated and subject to switching external contact constraints. Recently several methods have been proposed to create inverse dynamics controllers and operational space controllers for these robots. In an attempt to compare these different approaches, we develop a general framework for inverse dynamics control and show that these methods lead to very similar controllers. We are then able to greatly simplify recent whole-body controllers based on operational space approaches using kinematic projections, bringing them closer to efficient practical implementations. We also generalize these controllers such that they can be optimal under an arbitrary quadratic cost in the commands.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl andriluka2011
Benchmark datasets for pose estimation and tracking

Andriluka, M., Sigal, L., Black, M. J.

In Visual Analysis of Humans: Looking at People, pages: 253-274, (Editors: Moesland and Hilton and Kr"uger and Sigal), Springer-Verlag, London, 2011 (incollection)

ps

publisher's site Project Page [BibTex]

publisher's site Project Page [BibTex]


Thumb xl foe2011
Fields of experts

Roth, S., Black, M. J.

In Markov Random Fields for Vision and Image Processing, pages: 297-310, (Editors: Blake, A. and Kohli, P. and Rother, C.), MIT Press, 2011 (incollection)

Abstract
Fields of Experts are high-order Markov random field (MRF) models with potential functions that extend over large pixel neighborhoods. The clique potentials are modeled as a Product of Experts using nonlinear functions of many linear filter responses. In contrast to previous MRF approaches, all parameters, including the linear filters themselves, are learned from training data. A Field of Experts (FoE) provides a generic, expressive image prior that can capture the statistics of natural scenes, and can be used for a variety of machine vision tasks. The capabilities of FoEs are demonstrated with two example applications, image denoising and image inpainting, which are implemented using a simple, approximate inference scheme. While the FoE model is trained on a generic image database and is not tuned toward a specific application, the results compete with specialized techniques.

ps

publisher site [BibTex]

publisher site [BibTex]


Thumb xl hmdb snapshot1
HMDB: A Large Video Database for Human Motion Recognition

Kuhne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.

In IEEE International Conference on Computer Vision (ICCV), 2011 (inproceedings)

ps

code, webpage, dataset pdf [BibTex]

code, webpage, dataset pdf [BibTex]


no image
Context dependent changes in grip selectivity in primate ventral premotor cortex

Franquemont, L., Vargas-Irwin, C., Black, M., Donoghue, J.

2011 Abstract Viewer and Itinerary Planner, Online, Society for Neuroscience, 2011, Online (conference)

ps

[BibTex]

[BibTex]


no image
Towards a freely moving animal model: Combining markerless multi-camera video capture and wirelessly transmitted neural recording for the analysis of walking

Foster, J., Freifeld, O., Nuyujukian, P., Ryu, S., Black, M., Shenoy, K.

2011 Abstract Viewer and Itinerary Planner, Society for Neuroscience, 2011, Online (conference)

ps

Project Page [BibTex]

Project Page [BibTex]