Header logo is


2017


no image
Editorial for the Special Issue on Microdevices and Microsystems for Cell Manipulation

Hu, W., Ohta, A. T.

8, Multidisciplinary Digital Publishing Institute, September 2017 (misc)

pi

DOI [BibTex]

2017


DOI [BibTex]


Crowdshaping Realistic {3D} Avatars with Words
Crowdshaping Realistic 3D Avatars with Words

Streuber, S., Ramirez, M. Q., Black, M., Zuffi, S., O’Toole, A., Hill, M. Q., Hahn, C. A.

August 2017, Application PCT/EP2017/051954 (misc)

Abstract
A method for generating a body shape, comprising the steps: - receiving one or more linguistic descriptors related to the body shape; - retrieving an association between the one or more linguistic descriptors and a body shape; and - generating the body shape, based on the association.

ps

Google Patents [BibTex]

Google Patents [BibTex]


Methods, apparatuses, and systems for micromanipulation with adhesive fibrillar structures
Methods, apparatuses, and systems for micromanipulation with adhesive fibrillar structures

Sitti, M., Mengüç, Y.

US Patent 9,731,422, 2017 (patent)

Abstract
The present invention are methods for fabrication of micro- and/or nano-scale adhesive fibers and their use for movement and manipulation of objects. Further disclosed is a method of manipulating a part by providing a manipulation device with a plurality of fibers, where each fiber has a tip with a flat surface that is parallel to a backing layer, contacting the flat surfaces on an object, moving the object to a new location, then disengaging the tips from the object.

pi

link (url) [BibTex]

2016


Skinned multi-person linear model
Skinned multi-person linear model

Black, M.J., Loper, M., Mahmood, N., Pons-Moll, G., Romero, J.

December 2016, Application PCT/EP2016/064610 (misc)

Abstract
The invention comprises a learned model of human body shape and pose dependent shape variation that is more accurate than previous models and is compatible with existing graphics pipelines. Our Skinned Multi-Person Linear model (SMPL) is a skinned vertex based model that accurately represents a wide variety of body shapes in natural human poses. The parameters of the model are learned from data including the rest pose template, blend weights, pose-dependent blend shapes, identity- dependent blend shapes, and a regressor from vertices to joint locations. Unlike previous models, the pose-dependent blend shapes are a linear function of the elements of the pose rotation matrices. This simple formulation enables training the entire model from a relatively large number of aligned 3D meshes of different people in different poses. The invention quantitatively evaluates variants of SMPL using linear or dual- quaternion blend skinning and show that both are more accurate than a Blend SCAPE model trained on the same data. In a further embodiment, the invention realistically models dynamic soft-tissue deformations. Because it is based on blend skinning, SMPL is compatible with existing rendering engines and we make it available for research purposes.

ps

Google Patents [BibTex]

2016


Google Patents [BibTex]


System and method to magnetically actuate a capsule endoscopic robot for diagnosis and treatment
System and method to magnetically actuate a capsule endoscopic robot for diagnosis and treatment

Sitti, M., Yim, S.

May 2016, US Patent 9,445,711 (patent)

Abstract
Present invention describes a swallowable device with a soft, compliant exterior, whose shape can be changed through the use of magnetic fields, and which can be locomoted in a rolling motion through magnetic control from the exterior of the patient. The present invention could be used for a variety of medical applications inside the GI tract including but not limited to drug delivery, biopsy, heat cauterization, pH sensing, biochemical sensing, micro-surgery, and active imaging.

pi

link (url) [BibTex]


Remotely addressable magnetic composite micro-actuators
Remotely addressable magnetic composite micro-actuators

Sitti, M., Diller, E., Miyashita, S.

Febuary 2016, US Patent App. 15/018,008 (patent)

Abstract
The present invention describes methods to fabricate actuators that can be remotely controlled in an addressable manner, and methods to provide remote control such micro-actuators. The actuators are composites of two permanent magnet materials, one of which is has high coercivity, and the other of which switches magnetization direction by applied fields. By switching the second material's magnetization direction, the two magnets either work together or cancel each other, resulting in distinct “on” and “off” behavior of the devices. The device can be switched “on” or “off” remotely using a field pulse of short duration.

pi

[BibTex]

[BibTex]


Remotely addressable magnetic composite micro-actuators
Remotely addressable magnetic composite micro-actuators

Sitti, M., Diller, E., Miyashita, S.

Febuary 2016, US Patent 9,281,112 (patent)

Abstract
The present invention describes methods to fabricate actuators that can be remotely controlled in an addressable manner, and methods to provide remote control such micro-actuators. The actuators are composites of two permanent magnet materials, one of which is has high coercivity, and the other of which switches magnetization direction by applied fields. By switching the second material's magnetization direction, the two magnets either work together or cancel each other, resulting in distinct “on” and “off” behavior of the devices. The device can be switched “on” or “off” remotely using a field pulse of short duration.

pi

link (url) [BibTex]

link (url) [BibTex]


Perceiving Systems (2011-2015)
Perceiving Systems (2011-2015)
Scientific Advisory Board Report, 2016 (misc)

ps

pdf [BibTex]

pdf [BibTex]