Header logo is


2019


Decoding subcategories of human bodies from both body- and face-responsive cortical regions
Decoding subcategories of human bodies from both body- and face-responsive cortical regions

Foster, C., Zhao, M., Romero, J., Black, M. J., Mohler, B. J., Bartels, A., Bülthoff, I.

NeuroImage, 202(15):116085, November 2019 (article)

Abstract
Our visual system can easily categorize objects (e.g. faces vs. bodies) and further differentiate them into subcategories (e.g. male vs. female). This ability is particularly important for objects of social significance, such as human faces and bodies. While many studies have demonstrated category selectivity to faces and bodies in the brain, how subcategories of faces and bodies are represented remains unclear. Here, we investigated how the brain encodes two prominent subcategories shared by both faces and bodies, sex and weight, and whether neural responses to these subcategories rely on low-level visual, high-level visual or semantic similarity. We recorded brain activity with fMRI while participants viewed faces and bodies that varied in sex, weight, and image size. The results showed that the sex of bodies can be decoded from both body- and face-responsive brain areas, with the former exhibiting more consistent size-invariant decoding than the latter. Body weight could also be decoded in face-responsive areas and in distributed body-responsive areas, and this decoding was also invariant to image size. The weight of faces could be decoded from the fusiform body area (FBA), and weight could be decoded across face and body stimuli in the extrastriate body area (EBA) and a distributed body-responsive area. The sex of well-controlled faces (e.g. excluding hairstyles) could not be decoded from face- or body-responsive regions. These results demonstrate that both face- and body-responsive brain regions encode information that can distinguish the sex and weight of bodies. Moreover, the neural patterns corresponding to sex and weight were invariant to image size and could sometimes generalize across face and body stimuli, suggesting that such subcategorical information is encoded with a high-level visual or semantic code.

ps

paper pdf DOI [BibTex]

2019


paper pdf DOI [BibTex]


Active Perception based Formation Control for Multiple Aerial Vehicles
Active Perception based Formation Control for Multiple Aerial Vehicles

Tallamraju, R., Price, E., Ludwig, R., Karlapalem, K., Bülthoff, H. H., Black, M. J., Ahmad, A.

IEEE Robotics and Automation Letters, Robotics and Automation Letters, 4(4):4491-4498, IEEE, October 2019 (article)

Abstract
We present a novel robotic front-end for autonomous aerial motion-capture (mocap) in outdoor environments. In previous work, we presented an approach for cooperative detection and tracking (CDT) of a subject using multiple micro-aerial vehicles (MAVs). However, it did not ensure optimal view-point configurations of the MAVs to minimize the uncertainty in the person's cooperatively tracked 3D position estimate. In this article, we introduce an active approach for CDT. In contrast to cooperatively tracking only the 3D positions of the person, the MAVs can actively compute optimal local motion plans, resulting in optimal view-point configurations, which minimize the uncertainty in the tracked estimate. We achieve this by decoupling the goal of active tracking into a quadratic objective and non-convex constraints corresponding to angular configurations of the MAVs w.r.t. the person. We derive this decoupling using Gaussian observation model assumptions within the CDT algorithm. We preserve convexity in optimization by embedding all the non-convex constraints, including those for dynamic obstacle avoidance, as external control inputs in the MPC dynamics. Multiple real robot experiments and comparisons involving 3 MAVs in several challenging scenarios are presented.

ps

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


no image
Decoding the Viewpoint and Identity of Faces and Bodies

Foster, C., Zhao, M., Bolkart, T., Black, M., Bartels, A., Bülthoff, I.

Journal of Vision, 19(10): 54c, pages: 54-55, Arvo Journals, September 2019 (article)

Abstract
(2019). . , 19(10): 25.13, 54-55. doi: Zitierlink: http://hdl.handle.net/21.11116/0000-0003-7493-4

ps

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Learning and Tracking the {3D} Body Shape of Freely Moving Infants from {RGB-D} sequences
Learning and Tracking the 3D Body Shape of Freely Moving Infants from RGB-D sequences

Hesse, N., Pujades, S., Black, M., Arens, M., Hofmann, U., Schroeder, S.

Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2019 (article)

Abstract
Statistical models of the human body surface are generally learned from thousands of high-quality 3D scans in predefined poses to cover the wide variety of human body shapes and articulations. Acquisition of such data requires expensive equipment, calibration procedures, and is limited to cooperative subjects who can understand and follow instructions, such as adults. We present a method for learning a statistical 3D Skinned Multi-Infant Linear body model (SMIL) from incomplete, low-quality RGB-D sequences of freely moving infants. Quantitative experiments show that SMIL faithfully represents the RGB-D data and properly factorizes the shape and pose of the infants. To demonstrate the applicability of SMIL, we fit the model to RGB-D sequences of freely moving infants and show, with a case study, that our method captures enough motion detail for General Movements Assessment (GMA), a method used in clinical practice for early detection of neurodevelopmental disorders in infants. SMIL provides a new tool for analyzing infant shape and movement and is a step towards an automated system for GMA.

ps

pdf Journal DOI [BibTex]

pdf Journal DOI [BibTex]


 Perceptual Effects of Inconsistency in Human Animations
Perceptual Effects of Inconsistency in Human Animations

Kenny, S., Mahmood, N., Honda, C., Black, M. J., Troje, N. F.

ACM Trans. Appl. Percept., 16(1):2:1-2:18, Febuary 2019 (article)

Abstract
The individual shape of the human body, including the geometry of its articulated structure and the distribution of weight over that structure, influences the kinematics of a person’s movements. How sensitive is the visual system to inconsistencies between shape and motion introduced by retargeting motion from one person onto the shape of another? We used optical motion capture to record five pairs of male performers with large differences in body weight, while they pushed, lifted, and threw objects. From these data, we estimated both the kinematics of the actions as well as the performer’s individual body shape. To obtain consistent and inconsistent stimuli, we created animated avatars by combining the shape and motion estimates from either a single performer or from different performers. Using these stimuli we conducted three experiments in an immersive virtual reality environment. First, a group of participants detected which of two stimuli was inconsistent. Performance was very low, and results were only marginally significant. Next, a second group of participants rated perceived attractiveness, eeriness, and humanness of consistent and inconsistent stimuli, but these judgements of animation characteristics were not affected by consistency of the stimuli. Finally, a third group of participants rated properties of the objects rather than of the performers. Here, we found strong influences of shape-motion inconsistency on perceived weight and thrown distance of objects. This suggests that the visual system relies on its knowledge of shape and motion and that these components are assimilated into an altered perception of the action outcome. We propose that the visual system attempts to resist inconsistent interpretations of human animations. Actions involving object manipulations present an opportunity for the visual system to reinterpret the introduced inconsistencies as a change in the dynamics of an object rather than as an unexpected combination of body shape and body motion.

ps

publisher pdf DOI [BibTex]

publisher pdf DOI [BibTex]


no image
Response of active Brownian particles to shear flow

Asheichyk, K., Solon, A., Rohwer, C. M., Krüger, M.

The Journal of Chemical Physics, 150(14), American Institute of Physics, Woodbury, N.Y., 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Vortex Mass in the Three-Dimensional O(2) Scalar Theory

Delfino, G., Selke, W., Squarcini, A.

Physical Review Letters, 122(5), American Physical Society, Woodbury, N.Y., 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Dynamics near planar walls for various model self-phoretic particles

Bayati, P., Popescu, M. N., Uspal, W. E., Dietrich, S., Najafi, A.

Soft Matter, 15(28):5644-5672, Royal Society of Chemistry, Cambridge, UK, 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Glucose Oxidase Micropumps: Multi-Faceted Effects of Chemical Activity on Tracer Particles Near the Solid-Liquid Interface

Munteanu, R. E., Popescu, M. N., Gáspár, S.

Condensed Matter, 4(3), MDPI, Basel, 2019 (article)

icm

DOI [BibTex]


no image
Criticality senses topology

Vasilyev, O. A., Maciolek, A., Dietrich, S.

EPL, 128(2), EDP Science, Les-Ulis, 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Statistical Coverage Control of Mobile Sensor Networks

Arslan, Ö.

IEEE Transactions on Robotics, 35(4):889-908, 2019 (article)

am

DOI [BibTex]

DOI [BibTex]


no image
Drag Force for Asymmetrically Grafted Colloids in Polymer Solutions

Werner, M., Malgaretti, P., Maciolek, A.

Frontiers in Physics, 7, Frontiers Media, Lausanne, 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Feeling Your Neighbors across the Walls: How Interpore Ionic Interactions Affect Capacitive Energy Storage

Kondrat, S., Vasilyev, O., Kornyshev, A. A.

The Journal of Physical Chemistry Letters, 10(16):4523-4527, American Chemical Society, Washington, DC, 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Active Janus colloids at chemically structured surfaces

Uspal, W. E., Popescu, M. N., Dietrich, S., Tasinkevych, M.

The Journal of Chemical Physics, 150(20), American Institute of Physics, Woodbury, N.Y., 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Illumination-induced motion of a Janus nanoparticle in binary solvents

Araki, T., Maciolek, A.

Soft Matter, 15(26):5243-5254, Royal Society of Chemistry, Cambridge, UK, 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Transient response of an electrolyte to a thermal quench

Janssen, M., Bier, M.

Physical Review E, 99(4), American Physical Society, Melville, NY, 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


The Virtual Caliper: Rapid Creation of Metrically Accurate Avatars from {3D} Measurements
The Virtual Caliper: Rapid Creation of Metrically Accurate Avatars from 3D Measurements

Pujades, S., Mohler, B., Thaler, A., Tesch, J., Mahmood, N., Hesse, N., Bülthoff, H. H., Black, M. J.

IEEE Transactions on Visualization and Computer Graphics, 25, pages: 1887,1897, IEEE, 2019 (article)

Abstract
Creating metrically accurate avatars is important for many applications such as virtual clothing try-on, ergonomics, medicine, immersive social media, telepresence, and gaming. Creating avatars that precisely represent a particular individual is challenging however, due to the need for expensive 3D scanners, privacy issues with photographs or videos, and difficulty in making accurate tailoring measurements. We overcome these challenges by creating “The Virtual Caliper”, which uses VR game controllers to make simple measurements. First, we establish what body measurements users can reliably make on their own body. We find several distance measurements to be good candidates and then verify that these are linearly related to 3D body shape as represented by the SMPL body model. The Virtual Caliper enables novice users to accurately measure themselves and create an avatar with their own body shape. We evaluate the metric accuracy relative to ground truth 3D body scan data, compare the method quantitatively to other avatar creation tools, and perform extensive perceptual studies. We also provide a software application to the community that enables novices to rapidly create avatars in fewer than five minutes. Not only is our approach more rapid than existing methods, it exports a metrically accurate 3D avatar model that is rigged and skinned.

ps

Project Page IEEE Open Access IEEE Open Access PDF DOI [BibTex]

Project Page IEEE Open Access IEEE Open Access PDF DOI [BibTex]


no image
Aging phenomena during phase separation in fluids: decay of autocorrelation for vapor\textendashliquid transitions

Roy, Sutapa, Bera, Arabinda, Majumder, Suman, Das, Subir K.

Soft Matter, 15(23):4743-4750, Royal Society of Chemistry, Cambridge, UK, 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Flux and storage of energy in nonequilibrium stationary states

Holyst, R., Maciolek, A., Zhang, Y., Litniewski, M., Knycha\la, P., Kasprzak, M., Banaszak, M.

Physical Review E, 99(4), American Physical Society, Melville, NY, 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Correlations and forces in sheared fluids with or without quenching

Rohwer, C. M., Maciolek, A., Dietrich, S., Krüger, M.

New Journal of Physics, 21, IOP Publishing, Bristol, 2019 (article)

icm

DOI [BibTex]


no image
Ensemble dependence of critical Casimir forces in films with Dirichlet boundary conditions

Rohwer, C. M., Squarcini, A., Vasilyev, O., Dietrich, S., Gross, M.

Physical Review E, 99(6), American Physical Society, Melville, NY, 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Controlling the dynamics of colloidal particles by critical Casimir forces

Magazzù, A., Callegari, A., Staforelli, J. P., Gambassi, A., Dietrich, S., Volpe, G.

Soft Matter, 15(10):2152-2162, Royal Society of Chemistry, Cambridge, UK, 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Charge regulation radically modifies electrostatics in membrane stacks

Majee, A., Bier, M., Blossey, R., Podgornik, R.

Physical Review E, 100(5), American Physical Society, Melville, NY, 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Self and Body Part Localization in Virtual Reality: Comparing a Headset and a Large-Screen Immersive Display

van der Veer, A. H., Longo, M. R., Alsmith, A. J. T., Wong, H. Y., Mohler, B. J.

Frontiers in Robotics and AI, 6(33), 2019 (article)

ps

DOI [BibTex]

DOI [BibTex]


no image
Comment on "Which interactions dominate in active colloids?" [J. Chem. Phys. 150, 061102 (2019)]

Popescu, M. N., Dominguez, A., Uspal, W. E., Tasinkevych, M., Dietrich, S.

The Journal of Chemical Physics, 151(6), American Institute of Physics, Woodbury, N.Y., 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Current-mediated synchronization of a pair of beating non-identical flagella

Dotsenko, V., Maciolek, A., Oshanin, G., Vasilyev, O., Dietrich, S.

New Journal of Physics, 21, IOP Publishing, Bristol, 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Driving an electrolyte through a corrugated nanopore

Malgaretti, P., Janssen, M., Pagonabarraga, I., Rubi, J. M.

The Journal of Chemical Physics, 151(8), American Institute of Physics, Woodbury, N.Y., 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Spectral Content of a Single Non-Brownian Trajectory

Krapf, D., Lukat, N., Marinari, E., Metzler, R., Oshanin, G., Selhuber-Unkel, C., Squarcini, A., Stadler, L., Weiss, M., Xu, X.

Physical Review X, 9(1), American Physical Society, New York, NY, 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Curvature affects electrolyte relaxation: Studies of spherical and cylindrical electrodes

Janssen, M.

Physical Review E, 100(4), American Physical Society, Melville, NY, 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Dynamics of the critical Casimir force for a conserved order parameter after a critical quench

Gross, M., Rohwer, C. M., Dietrich, S.

Physical Review E, 100(1), American Physical Society, Melville, NY, 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Interface structures in ionic liquid crystals

Bartsch, H., Bier, M., Dietrich, S.

Soft Matter, 15(20):4109-4126, Royal Society of Chemistry, Cambridge, UK, 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Interfacial premelting of ice in nano composite materials

Li, H., Bier, M., Mars, J., Weiss, H., Dippel, A., Gutowski, O., Honkimäki, V., Mezger, M.

Physical Chemistry Chemical Physics, 21(7):3734-3741, Royal Society of Chemistry, Cambridge, England, 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Connections Matter: On the Importance of Pore Percolation for Nanoporous Supercapacitors

Vasilyev, O., Kornyshev, A. A., Kondrat, S.

ACS Applied Energy Materials, 2(8):5386-5390, American Chemical Society, Washington, DC, 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Theory of light-activated catalytic Janus particles

Uspal, W. E.

The Journal of Chemical Physics, 150(11), American Institute of Physics, Woodbury, N.Y., 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Recovering superhydrophobicity in nanoscale and macroscale surface textures

Giacomello, A., Schimmele, L., Dietrich, S., Tasinkevych, M.

Soft Matter, 15(37):7462-7471, Royal Society of Chemistry, Cambridge, UK, 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Brownian dynamics assessment of enhanced diffusion exhibited by "fluctuating-dumbbell enzymes".

Kondrat, S., Popescu, M. N.

Physical Chemistry Chemical Physics, 21(35):18811-18815, Royal Society of Chemistry, Cambridge, England, 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]

2018


Deep Inertial Poser: Learning to Reconstruct Human Pose from Sparse Inertial Measurements in Real Time
Deep Inertial Poser: Learning to Reconstruct Human Pose from Sparse Inertial Measurements in Real Time

Huang, Y., Kaufmann, M., Aksan, E., Black, M. J., Hilliges, O., Pons-Moll, G.

ACM Transactions on Graphics, (Proc. SIGGRAPH Asia), 37, pages: 185:1-185:15, ACM, November 2018, Two first authors contributed equally (article)

Abstract
We demonstrate a novel deep neural network capable of reconstructing human full body pose in real-time from 6 Inertial Measurement Units (IMUs) worn on the user's body. In doing so, we address several difficult challenges. First, the problem is severely under-constrained as multiple pose parameters produce the same IMU orientations. Second, capturing IMU data in conjunction with ground-truth poses is expensive and difficult to do in many target application scenarios (e.g., outdoors). Third, modeling temporal dependencies through non-linear optimization has proven effective in prior work but makes real-time prediction infeasible. To address this important limitation, we learn the temporal pose priors using deep learning. To learn from sufficient data, we synthesize IMU data from motion capture datasets. A bi-directional RNN architecture leverages past and future information that is available at training time. At test time, we deploy the network in a sliding window fashion, retaining real time capabilities. To evaluate our method, we recorded DIP-IMU, a dataset consisting of 10 subjects wearing 17 IMUs for validation in 64 sequences with 330,000 time instants; this constitutes the largest IMU dataset publicly available. We quantitatively evaluate our approach on multiple datasets and show results from a real-time implementation. DIP-IMU and the code are available for research purposes.

ps

data code pdf preprint errata video DOI Project Page [BibTex]

2018


data code pdf preprint errata video DOI Project Page [BibTex]


A Value-Driven Eldercare Robot: Virtual and Physical Instantiations of a Case-Supported Principle-Based Behavior Paradigm
A Value-Driven Eldercare Robot: Virtual and Physical Instantiations of a Case-Supported Principle-Based Behavior Paradigm

Anderson, M., Anderson, S., Berenz, V.

Proceedings of the IEEE, pages: 1,15, October 2018 (article)

Abstract
In this paper, a case-supported principle-based behavior paradigm is proposed to help ensure ethical behavior of autonomous machines. We argue that ethically significant behavior of autonomous systems should be guided by explicit ethical principles determined through a consensus of ethicists. Such a consensus is likely to emerge in many areas in which autonomous systems are apt to be deployed and for the actions they are liable to undertake. We believe that this is the case since we are more likely to agree on how machines ought to treat us than on how human beings ought to treat one another. Given such a consensus, particular cases of ethical dilemmas where ethicists agree on the ethically relevant features and the right course of action can be used to help discover principles that balance these features when they are in conflict. Such principles not only help ensure ethical behavior of complex and dynamic systems but also can serve as a basis for justification of this behavior. The requirements, methods, implementation, and evaluation components of the paradigm are detailed as well as its instantiation in both a simulated and real robot functioning in the domain of eldercare.

am

link (url) DOI [BibTex]


Deep Neural Network-based Cooperative Visual Tracking through Multiple Micro Aerial Vehicles
Deep Neural Network-based Cooperative Visual Tracking through Multiple Micro Aerial Vehicles

Price, E., Lawless, G., Ludwig, R., Martinovic, I., Buelthoff, H. H., Black, M. J., Ahmad, A.

IEEE Robotics and Automation Letters, Robotics and Automation Letters, 3(4):3193-3200, IEEE, October 2018, Also accepted and presented in the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). (article)

Abstract
Multi-camera tracking of humans and animals in outdoor environments is a relevant and challenging problem. Our approach to it involves a team of cooperating micro aerial vehicles (MAVs) with on-board cameras only. DNNs often fail at objects with small scale or far away from the camera, which are typical characteristics of a scenario with aerial robots. Thus, the core problem addressed in this paper is how to achieve on-board, online, continuous and accurate vision-based detections using DNNs for visual person tracking through MAVs. Our solution leverages cooperation among multiple MAVs and active selection of most informative regions of image. We demonstrate the efficiency of our approach through simulations with up to 16 robots and real robot experiments involving two aerial robots tracking a person, while maintaining an active perception-driven formation. ROS-based source code is provided for the benefit of the community.

ps

Published Version link (url) DOI [BibTex]

Published Version link (url) DOI [BibTex]


First Impressions of Personality Traits From Body Shapes
First Impressions of Personality Traits From Body Shapes

Hu, Y., Parde, C. J., Hill, M. Q., Mahmood, N., O’Toole, A. J.

Psychological Science, 29(12):1969-–1983, October 2018 (article)

Abstract
People infer the personalities of others from their facial appearance. Whether they do so from body shapes is less studied. We explored personality inferences made from body shapes. Participants rated personality traits for male and female bodies generated with a three-dimensional body model. Multivariate spaces created from these ratings indicated that people evaluate bodies on valence and agency in ways that directly contrast positive and negative traits from the Big Five domains. Body-trait stereotypes based on the trait ratings revealed a myriad of diverse body shapes that typify individual traits. Personality-trait profiles were predicted reliably from a subset of the body-shape features used to specify the three-dimensional bodies. Body features related to extraversion and conscientiousness were predicted with the highest consensus, followed by openness traits. This study provides the first comprehensive look at the range, diversity, and reliability of personality inferences that people make from body shapes.

ps

publisher site pdf DOI [BibTex]

publisher site pdf DOI [BibTex]


Playful: Reactive Programming for Orchestrating Robotic Behavior
Playful: Reactive Programming for Orchestrating Robotic Behavior

Berenz, V., Schaal, S.

IEEE Robotics Automation Magazine, 25(3):49-60, September 2018 (article) In press

Abstract
For many service robots, reactivity to changes in their surroundings is a must. However, developing software suitable for dynamic environments is difficult. Existing robotic middleware allows engineers to design behavior graphs by organizing communication between components. But because these graphs are structurally inflexible, they hardly support the development of complex reactive behavior. To address this limitation, we propose Playful, a software platform that applies reactive programming to the specification of robotic behavior.

am

playful website playful_IEEE_RAM link (url) DOI [BibTex]


ClusterNet: Instance Segmentation in RGB-D Images
ClusterNet: Instance Segmentation in RGB-D Images

Shao, L., Tian, Y., Bohg, J.

arXiv, September 2018, Submitted to ICRA'19 (article) Submitted

Abstract
We propose a method for instance-level segmentation that uses RGB-D data as input and provides detailed information about the location, geometry and number of {\em individual\/} objects in the scene. This level of understanding is fundamental for autonomous robots. It enables safe and robust decision-making under the large uncertainty of the real-world. In our model, we propose to use the first and second order moments of the object occupancy function to represent an object instance. We train an hourglass Deep Neural Network (DNN) where each pixel in the output votes for the 3D position of the corresponding object center and for the object's size and pose. The final instance segmentation is achieved through clustering in the space of moments. The object-centric training loss is defined on the output of the clustering. Our method outperforms the state-of-the-art instance segmentation method on our synthesized dataset. We show that our method generalizes well on real-world data achieving visually better segmentation results.

am

link (url) [BibTex]

link (url) [BibTex]


Visual Perception and Evaluation of Photo-Realistic Self-Avatars From {3D} Body Scans in Males and Females
Visual Perception and Evaluation of Photo-Realistic Self-Avatars From 3D Body Scans in Males and Females

Thaler, A., Piryankova, I., Stefanucci, J. K., Pujades, S., de la Rosa, S., Streuber, S., Romero, J., Black, M. J., Mohler, B. J.

Frontiers in ICT, 5, pages: 1-14, September 2018 (article)

Abstract
The creation or streaming of photo-realistic self-avatars is important for virtual reality applications that aim for perception and action to replicate real world experience. The appearance and recognition of a digital self-avatar may be especially important for applications related to telepresence, embodied virtual reality, or immersive games. We investigated gender differences in the use of visual cues (shape, texture) of a self-avatar for estimating body weight and evaluating avatar appearance. A full-body scanner was used to capture each participant's body geometry and color information and a set of 3D virtual avatars with realistic weight variations was created based on a statistical body model. Additionally, a second set of avatars was created with an average underlying body shape matched to each participant’s height and weight. In four sets of psychophysical experiments, the influence of visual cues on the accuracy of body weight estimation and the sensitivity to weight changes was assessed by manipulating body shape (own, average) and texture (own photo-realistic, checkerboard). The avatars were presented on a large-screen display, and participants responded to whether the avatar's weight corresponded to their own weight. Participants also adjusted the avatar's weight to their desired weight and evaluated the avatar's appearance with regard to similarity to their own body, uncanniness, and their willingness to accept it as a digital representation of the self. The results of the psychophysical experiments revealed no gender difference in the accuracy of estimating body weight in avatars. However, males accepted a larger weight range of the avatars as corresponding to their own. In terms of the ideal body weight, females but not males desired a thinner body. With regard to the evaluation of avatar appearance, the questionnaire responses suggest that own photo-realistic texture was more important to males for higher similarity ratings, while own body shape seemed to be more important to females. These results argue for gender-specific considerations when creating self-avatars.

ps

pdf DOI [BibTex]

pdf DOI [BibTex]


Robust Physics-based Motion Retargeting with Realistic Body Shapes
Robust Physics-based Motion Retargeting with Realistic Body Shapes

Borno, M. A., Righetti, L., Black, M. J., Delp, S. L., Fiume, E., Romero, J.

Computer Graphics Forum, 37, pages: 6:1-12, July 2018 (article)

Abstract
Motion capture is often retargeted to new, and sometimes drastically different, characters. When the characters take on realistic human shapes, however, we become more sensitive to the motion looking right. This means adapting it to be consistent with the physical constraints imposed by different body shapes. We show how to take realistic 3D human shapes, approximate them using a simplified representation, and animate them so that they move realistically using physically-based retargeting. We develop a novel spacetime optimization approach that learns and robustly adapts physical controllers to new bodies and constraints. The approach automatically adapts the motion of the mocap subject to the body shape of a target subject. This motion respects the physical properties of the new body and every body shape results in a different and appropriate movement. This makes it easy to create a varied set of motions from a single mocap sequence by simply varying the characters. In an interactive environment, successful retargeting requires adapting the motion to unexpected external forces. We achieve robustness to such forces using a novel LQR-tree formulation. We show that the simulated motions look appropriate to each character’s anatomy and their actions are robust to perturbations.

mg ps

pdf video Project Page Project Page [BibTex]

pdf video Project Page Project Page [BibTex]


Real-time Perception meets Reactive Motion Generation
Real-time Perception meets Reactive Motion Generation

(Best Systems Paper Finalists - Amazon Robotics Best Paper Awards in Manipulation)

Kappler, D., Meier, F., Issac, J., Mainprice, J., Garcia Cifuentes, C., Wüthrich, M., Berenz, V., Schaal, S., Ratliff, N., Bohg, J.

IEEE Robotics and Automation Letters, 3(3):1864-1871, July 2018 (article)

Abstract
We address the challenging problem of robotic grasping and manipulation in the presence of uncertainty. This uncertainty is due to noisy sensing, inaccurate models and hard-to-predict environment dynamics. Our approach emphasizes the importance of continuous, real-time perception and its tight integration with reactive motion generation methods. We present a fully integrated system where real-time object and robot tracking as well as ambient world modeling provides the necessary input to feedback controllers and continuous motion optimizers. Specifically, they provide attractive and repulsive potentials based on which the controllers and motion optimizer can online compute movement policies at different time intervals. We extensively evaluate the proposed system on a real robotic platform in four scenarios that exhibit either challenging workspace geometry or a dynamic environment. We compare the proposed integrated system with a more traditional sense-plan-act approach that is still widely used. In 333 experiments, we show the robustness and accuracy of the proposed system.

am

arxiv video video link (url) DOI Project Page [BibTex]


Assessing body image in anorexia nervosa using biometric self-avatars in virtual reality: Attitudinal components rather than visual body size estimation are distorted
Assessing body image in anorexia nervosa using biometric self-avatars in virtual reality: Attitudinal components rather than visual body size estimation are distorted

Mölbert, S. C., Thaler, A., Mohler, B. J., Streuber, S., Romero, J., Black, M. J., Zipfel, S., Karnath, H., Giel, K. E.

Psychological Medicine, 48(4):642-653, March 2018 (article)

Abstract
Background: Body image disturbance (BID) is a core symptom of anorexia nervosa (AN), but as yet distinctive features of BID are unknown. The present study aimed at disentangling perceptual and attitudinal components of BID in AN. Methods: We investigated n=24 women with AN and n=24 controls. Based on a 3D body scan, we created realistic virtual 3D bodies (avatars) for each participant that were varied through a range of ±20% of the participants' weights. Avatars were presented in a virtual reality mirror scenario. Using different psychophysical tasks, participants identified and adjusted their actual and their desired body weight. To test for general perceptual biases in estimating body weight, a second experiment investigated perception of weight and shape matched avatars with another identity. Results: Women with AN and controls underestimated their weight, with a trend that women with AN underestimated more. The average desired body of controls had normal weight while the average desired weight of women with AN corresponded to extreme AN (DSM-5). Correlation analyses revealed that desired body weight, but not accuracy of weight estimation, was associated with eating disorder symptoms. In the second experiment, both groups estimated accurately while the most attractive body was similar to Experiment 1. Conclusions: Our results contradict the widespread assumption that patients with AN overestimate their body weight due to visual distortions. Rather, they illustrate that BID might be driven by distorted attitudes with regard to the desired body. Clinical interventions should aim at helping patients with AN to change their desired weight.

ps

doi pdf DOI Project Page [BibTex]


Body size estimation of self and others in females varying in {BMI}
Body size estimation of self and others in females varying in BMI

Thaler, A., Geuss, M. N., Mölbert, S. C., Giel, K. E., Streuber, S., Romero, J., Black, M. J., Mohler, B. J.

PLoS ONE, 13(2), Febuary 2018 (article)

Abstract
Previous literature suggests that a disturbed ability to accurately identify own body size may contribute to overweight. Here, we investigated the influence of personal body size, indexed by body mass index (BMI), on body size estimation in a non-clinical population of females varying in BMI. We attempted to disentangle general biases in body size estimates and attitudinal influences by manipulating whether participants believed the body stimuli (personalized avatars with realistic weight variations) represented their own body or that of another person. Our results show that the accuracy of own body size estimation is predicted by personal BMI, such that participants with lower BMI underestimated their body size and participants with higher BMI overestimated their body size. Further, participants with higher BMI were less likely to notice the same percentage of weight gain than participants with lower BMI. Importantly, these results were only apparent when participants were judging a virtual body that was their own identity (Experiment 1), but not when they estimated the size of a body with another identity and the same underlying body shape (Experiment 2a). The different influences of BMI on accuracy of body size estimation and sensitivity to weight change for self and other identity suggests that effects of BMI on visual body size estimation are self-specific and not generalizable to other bodies.

ps

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


no image
Distributed Event-Based State Estimation for Networked Systems: An LMI Approach

Muehlebach, M., Trimpe, S.

IEEE Transactions on Automatic Control, 63(1):269-276, January 2018 (article)

am ics

arXiv (extended version) DOI Project Page [BibTex]

arXiv (extended version) DOI Project Page [BibTex]


no image
Active microrheology in corrugated channels

Puertas, A. M., Malgaretti, P., Pagonabarraga, I.

The Journal of Chemical Physics, 149(17), American Institute of Physics, Woodbury, N.Y., 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]