ei
pn
Klenske, E. D., Hennig, P., Schölkopf, B., Zeilinger, M. N.
Approximate dual control maintaining the value of information with an application to building control
In European Control Conference (ECC), pages: 800-806, June 2016 (inproceedings)
ei
pn
Kersting, H., Hennig, P.
Active Uncertainty Calibration in Bayesian ODE Solvers
Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence (UAI), pages: 309-318, (Editors: Ihler, A. and Janzing, D.), AUAI Press, June 2016 (conference)
am
ics
pn
Marco, A., Hennig, P., Bohg, J., Schaal, S., Trimpe, S.
Automatic LQR Tuning Based on Gaussian Process Global Optimization
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 270-277, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)
ei
pn
González, J., Dai, Z., Hennig, P., Lawrence, N.
Batch Bayesian Optimization via Local Penalization
Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS), 51, pages: 648-657, JMLR Workshop and Conference Proceedings, (Editors: Gretton, A. and Robert, C. C.), May 2016 (conference)
ei
pn
Bartels, S., Hennig, P.
Probabilistic Approximate Least-Squares
Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS), 51, pages: 676-684, JMLR Workshop and Conference Proceedings, (Editors: Gretton, A. and Robert, C. C. ), May 2016 (conference)
ei
pn
Klenske, E. D., Zeilinger, M., Schölkopf, B., Hennig, P.
Gaussian Process-Based Predictive Control for Periodic Error Correction
IEEE Transactions on Control Systems Technology , 24(1):110-121, 2016 (article)
ei
pn
Klenske, E. D., Hennig, P.
Dual Control for Approximate Bayesian Reinforcement Learning
Journal of Machine Learning Research, 17(127):1-30, 2016 (article)
ei
ps
pn
Kiefel, M., Schuler, C., Hennig, P.
Probabilistic Progress Bars
In Conference on Pattern Recognition (GCPR), 8753, pages: 331-341, Lecture Notes in Computer Science, (Editors: Jiang, X., Hornegger, J., and Koch, R.), Springer, GCPR, September 2014 (inproceedings)
ei
ps
pn
Hennig, P., Hauberg, S.
Probabilistic Solutions to Differential Equations and their Application to Riemannian Statistics
In Proceedings of the 17th International Conference on Artificial Intelligence and Statistics, 33, pages: 347-355, JMLR: Workshop and Conference Proceedings, (Editors: S Kaski and J Corander), Microtome Publishing, Brookline, MA, AISTATS, April 2014 (inproceedings)
am
pn
Meier, F., Hennig, P., Schaal, S.
Local Gaussian Regression
arXiv preprint, March 2014, clmc (misc)
ei
pn
Schober, M., Duvenaud, D., Hennig, P.
Probabilistic ODE Solvers with Runge-Kutta Means
In Advances in Neural Information Processing Systems 27, pages: 739-747, (Editors: Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence and K.Q. Weinberger), Curran Associates, Inc., 28th Annual Conference on Neural Information Processing Systems (NIPS), 2014 (inproceedings)
ei
pn
Garnett, R., Osborne, M., Hennig, P.
Active Learning of Linear Embeddings for Gaussian Processes
In Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence, pages: 230-239, (Editors: NL Zhang and J Tian), AUAI Press , Corvallis, Oregon, UAI2014, 2014, another link: http://arxiv.org/abs/1310.6740 (inproceedings)
ei
pn
Schober, M., Kasenburg, N., Feragen, A., Hennig, P., Hauberg, S.
Probabilistic Shortest Path Tractography in DTI Using Gaussian Process ODE Solvers
In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014, Lecture Notes in Computer Science Vol. 8675, pages: 265-272, (Editors: P. Golland, N. Hata, C. Barillot, J. Hornegger and R. Howe), Springer, Heidelberg, MICCAI, 2014 (inproceedings)
ei
pn
Gunter, T., Osborne, M., Garnett, R., Hennig, P., Roberts, S.
Sampling for Inference in Probabilistic Models with Fast Bayesian Quadrature
In Advances in Neural Information Processing Systems 27, pages: 2789-2797, (Editors: Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence and K.Q. Weinberger), Curran Associates, Inc., 28th Annual Conference on Neural Information Processing Systems (NIPS), 2014 (inproceedings)
am
ei
pn
Meier, F., Hennig, P., Schaal, S.
Incremental Local Gaussian Regression
In Advances in Neural Information Processing Systems 27, pages: 972-980, (Editors: Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence and K.Q. Weinberger), 28th Annual Conference on Neural Information Processing Systems (NIPS), 2014, clmc (inproceedings)
am
ei
pn
Meier, F., Hennig, P., Schaal, S.
Efficient Bayesian Local Model Learning for Control
In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, pages: 2244 - 2249, IROS, 2014, clmc (inproceedings)