Header logo is


2014


Probabilistic Progress Bars
Probabilistic Progress Bars

Kiefel, M., Schuler, C., Hennig, P.

In Conference on Pattern Recognition (GCPR), 8753, pages: 331-341, Lecture Notes in Computer Science, (Editors: Jiang, X., Hornegger, J., and Koch, R.), Springer, GCPR, September 2014 (inproceedings)

Abstract
Predicting the time at which the integral over a stochastic process reaches a target level is a value of interest in many applications. Often, such computations have to be made at low cost, in real time. As an intuitive example that captures many features of this problem class, we choose progress bars, a ubiquitous element of computer user interfaces. These predictors are usually based on simple point estimators, with no error modelling. This leads to fluctuating behaviour confusing to the user. It also does not provide a distribution prediction (risk values), which are crucial for many other application areas. We construct and empirically evaluate a fast, constant cost algorithm using a Gauss-Markov process model which provides more information to the user.

ei ps pn

website+code pdf DOI [BibTex]

2014


website+code pdf DOI [BibTex]


no image
Automatic Skill Evaluation for a Needle Passing Task in Robotic Surgery

Leung, S., Kuchenbecker, K. J.

In Proc. IROS Workshop on the Role of Human Sensorimotor Control in Robotic Surgery, Chicago, Illinois, sep 2014, Poster presentation given by Kuchenbecker. Best Poster Award (inproceedings)

hi

[BibTex]

[BibTex]


no image
A Data-driven Approach to Remote Tactile Interaction: From a BioTac Sensor to Any Fingertip Cutaneous Device

Pacchierotti, C., Prattichizzo, D., Kuchenbecker, K. J.

In Haptics: Neuroscience, Devices, Modeling, and Applications, Proc. EuroHaptics, Part I, 8618, pages: 418-424, Lecture Notes in Computer Science, Springer-Verlag, Berlin Heidelberg, June 2014, Poster presentation given by Pacchierotti in Versailles, France (inproceedings)

hi

[BibTex]

[BibTex]


no image
Evaluating the BioTac’s Ability to Detect and Characterize Lumps in Simulated Tissue

Hui, J. C. T., Kuchenbecker, K. J.

In Haptics: Neuroscience, Devices, Modeling, and Applications, Proc. EuroHaptics, Part II, 8619, pages: 295-302, Lecture Notes in Computer Science, Springer-Verlag, Berlin Heidelberg, June 2014, Poster presentation given by Hui in Versailles, France (inproceedings)

hi

[BibTex]

[BibTex]


Probabilistic Solutions to Differential Equations and their Application to Riemannian Statistics
Probabilistic Solutions to Differential Equations and their Application to Riemannian Statistics

Hennig, P., Hauberg, S.

In Proceedings of the 17th International Conference on Artificial Intelligence and Statistics, 33, pages: 347-355, JMLR: Workshop and Conference Proceedings, (Editors: S Kaski and J Corander), Microtome Publishing, Brookline, MA, AISTATS, April 2014 (inproceedings)

Abstract
We study a probabilistic numerical method for the solution of both boundary and initial value problems that returns a joint Gaussian process posterior over the solution. Such methods have concrete value in the statistics on Riemannian manifolds, where non-analytic ordinary differential equations are involved in virtually all computations. The probabilistic formulation permits marginalising the uncertainty of the numerical solution such that statistics are less sensitive to inaccuracies. This leads to new Riemannian algorithms for mean value computations and principal geodesic analysis. Marginalisation also means results can be less precise than point estimates, enabling a noticeable speed-up over the state of the art. Our approach is an argument for a wider point that uncertainty caused by numerical calculations should be tracked throughout the pipeline of machine learning algorithms.

ei ps pn

pdf Youtube Supplements Project page link (url) [BibTex]

pdf Youtube Supplements Project page link (url) [BibTex]


no image
Analyzing Human High-Fives to Create an Effective High-Fiving Robot

Fitter, N. T., Kuchenbecker, K. J.

In Proc. ACM/IEEE International Conference on Human-Robot Interaction (HRI), pages: 156-157, Bielefeld, Germany, March 2014, Poster presentation given by Fitter (inproceedings)

hi

[BibTex]

[BibTex]


no image
Dynamic Modeling and Control of Voice-Coil Actuators for High-Fidelity Display of Haptic Vibrations

McMahan, W., Kuchenbecker, K. J.

In Proc. IEEE Haptics Symposium, pages: 115-122, Houston, Texas, USA, February 2014, Oral presentation given by Kuchenbecker (inproceedings)

hi

[BibTex]

[BibTex]


no image
A Wearable Device for Controlling a Robot Gripper With Fingertip Contact, Pressure, Vibrotactile, and Grip Force Feedback

Pierce, R. M., Fedalei, E. A., Kuchenbecker, K. J.

In Proc. IEEE Haptics Symposium, pages: 19-25, Houston, Texas, USA, February 2014, Oral presentation given by Pierce (inproceedings)

hi

[BibTex]

[BibTex]


no image
Methods for Robotic Tool-Mediated Haptic Surface Recognition

Romano, J. M., Kuchenbecker, K. J.

In Proc. IEEE Haptics Symposium, pages: 49-56, Houston, Texas, USA, February 2014, Oral presentation given by Kuchenbecker. Finalist for Best Paper Award (inproceedings)

hi

[BibTex]

[BibTex]


no image
One Hundred Data-Driven Haptic Texture Models and Open-Source Methods for Rendering on 3D Objects

Culbertson, H., Delgado, J. J. L., Kuchenbecker, K. J.

In Proc. IEEE Haptics Symposium, pages: 319-325, Houston, Texas, USA, February 2014, Poster presentation given by Culbertson. Finalist for Best Poster Award (inproceedings)

hi

[BibTex]

[BibTex]


no image
Probabilistic ODE Solvers with Runge-Kutta Means

Schober, M., Duvenaud, D., Hennig, P.

In Advances in Neural Information Processing Systems 27, pages: 739-747, (Editors: Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence and K.Q. Weinberger), Curran Associates, Inc., 28th Annual Conference on Neural Information Processing Systems (NIPS), 2014 (inproceedings)

ei pn

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Active Learning of Linear Embeddings for Gaussian Processes

Garnett, R., Osborne, M., Hennig, P.

In Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence, pages: 230-239, (Editors: NL Zhang and J Tian), AUAI Press , Corvallis, Oregon, UAI2014, 2014, another link: http://arxiv.org/abs/1310.6740 (inproceedings)

ei pn

PDF Web [BibTex]

PDF Web [BibTex]


no image
Probabilistic Shortest Path Tractography in DTI Using Gaussian Process ODE Solvers

Schober, M., Kasenburg, N., Feragen, A., Hennig, P., Hauberg, S.

In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014, Lecture Notes in Computer Science Vol. 8675, pages: 265-272, (Editors: P. Golland, N. Hata, C. Barillot, J. Hornegger and R. Howe), Springer, Heidelberg, MICCAI, 2014 (inproceedings)

ei pn

DOI [BibTex]

DOI [BibTex]


no image
Sampling for Inference in Probabilistic Models with Fast Bayesian Quadrature

Gunter, T., Osborne, M., Garnett, R., Hennig, P., Roberts, S.

In Advances in Neural Information Processing Systems 27, pages: 2789-2797, (Editors: Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence and K.Q. Weinberger), Curran Associates, Inc., 28th Annual Conference on Neural Information Processing Systems (NIPS), 2014 (inproceedings)

ei pn

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Algorithm selection by rational metareasoning as a model of human strategy selection

Lieder, F., Plunkett, D., Hamrick, J. B., Russell, S. J., Hay, N. J., Griffiths, T. L.

In Advances in Neural Information Processing Systems 27, 2014 (inproceedings)

Abstract
Selecting the right algorithm is an important problem in computer science, because the algorithm often has to exploit the structure of the input to be efficient. The human mind faces the same challenge. Therefore, solutions to the algorithm selection problem can inspire models of human strategy selection and vice versa. Here, we view the algorithm selection problem as a special case of metareasoning and derive a solution that outperforms existing methods in sorting algorithm selection. We apply our theory to model how people choose between cognitive strategies and test its prediction in a behavioral experiment. We find that people quickly learn to adaptively choose between cognitive strategies. People's choices in our experiment are consistent with our model but inconsistent with previous theories of human strategy selection. Rational metareasoning appears to be a promising framework for reverse-engineering how people choose among cognitive strategies and translating the results into better solutions to the algorithm selection problem.

re

Project Page [BibTex]

Project Page [BibTex]


no image
Cutaneous Feedback of Planar Fingertip Deformation and Vibration on a da Vinci Surgical Robot

Pacchierotti, C., Shirsat, P., Koehn, J. K., Prattichizzo, D., Kuchenbecker, K. J.

In Proc. IROS Workshop on the Role of Human Sensorimotor Control in Robotic Surgery, Chicago, Illinois, 2014, Poster presentation given by Koehn (inproceedings)

hi

[BibTex]

[BibTex]


no image
Incremental Local Gaussian Regression

Meier, F., Hennig, P., Schaal, S.

In Advances in Neural Information Processing Systems 27, pages: 972-980, (Editors: Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence and K.Q. Weinberger), 28th Annual Conference on Neural Information Processing Systems (NIPS), 2014, clmc (inproceedings)

am ei pn

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Efficient Bayesian Local Model Learning for Control

Meier, F., Hennig, P., Schaal, S.

In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, pages: 2244 - 2249, IROS, 2014, clmc (inproceedings)

Abstract
Model-based control is essential for compliant controland force control in many modern complex robots, like humanoidor disaster robots. Due to many unknown and hard tomodel nonlinearities, analytical models of such robots are oftenonly very rough approximations. However, modern optimizationcontrollers frequently depend on reasonably accurate models,and degrade greatly in robustness and performance if modelerrors are too large. For a long time, machine learning hasbeen expected to provide automatic empirical model synthesis,yet so far, research has only generated feasibility studies butno learning algorithms that run reliably on complex robots.In this paper, we combine two promising worlds of regressiontechniques to generate a more powerful regression learningsystem. On the one hand, locally weighted regression techniquesare computationally efficient, but hard to tune due to avariety of data dependent meta-parameters. On the other hand,Bayesian regression has rather automatic and robust methods toset learning parameters, but becomes quickly computationallyinfeasible for big and high-dimensional data sets. By reducingthe complexity of Bayesian regression in the spirit of local modellearning through variational approximations, we arrive at anovel algorithm that is computationally efficient and easy toinitialize for robust learning. Evaluations on several datasetsdemonstrate very good learning performance and the potentialfor a general regression learning tool for robotics.

am ei pn

PDF link (url) DOI [BibTex]

PDF link (url) DOI [BibTex]


no image
Self-Exploration of the Stumpy Robot with Predictive Information Maximization

Martius, G., Jahn, L., Hauser, H., V. Hafner, V.

In Proc. From Animals to Animats, SAB 2014, 8575, pages: 32-42, LNCS, Springer, 2014 (inproceedings)

al

[BibTex]

[BibTex]


no image
The high availability of extreme events serves resource-rational decision-making

Lieder, F., Hsu, M., Griffiths, T. L.

In Proceedings of the 36th Annual Conference of the Cognitive Science Society, 2014 (inproceedings)

re

[BibTex]

[BibTex]


no image
Layers of Abstraction: (Neuro)computational models of learning local and global statistical regularities

Diaconescu, A., Lieder, F., Mathys, C., Stephan, K. E.

In 20th Annual Meeting of the Organization for Human Brain Mapping, 2014 (inproceedings)

re

[BibTex]

[BibTex]

2013


no image
Virtual Robotization of the Human Body via Data-Driven Vibrotactile Feedback

Kurihara, Y., Hachisu, T., Kuchenbecker, K. J., Kajimoto, H.

In Proc. International Conference on Advances in Computer Entertainment Technology (ACE), 8253, pages: 109-122, Lecture Notes in Computer Science, Springer, Enschede, Netherlands, 2013, Oral presentation given by Kurihara. Best Paper Silver Award (inproceedings)

hi

[BibTex]

2013


[BibTex]


no image
Governance of Humanoid Robot Using Master Exoskeleton

Kumra, S., Mohan, M., Gupta, S., Vaswani, H.

In Proceedings of the IEEE International Symposium on Robotics (ISR), Seoul, South Korea, October 2013 (inproceedings)

Abstract
Dexto:Eka: is an adult-size humanoid robot being developed with the aim of achieving tele-presence. The paper sheds light on the control of this robot using a Master Exoskeleton which comprises of an Exo-Frame, a Control Column and a Graphical User Interface. It further illuminates the processes and algorithms that have been utilized to make an efficient system that would effectively emulate a tele-operator.

hi

DOI [BibTex]

DOI [BibTex]


no image
Virtual Robotization of the Human Body Using Vibration Recording, Modeling and Rendering

Kurihara, Y., Hachisu, T., Kuchenbecker, K. J., Kajimoto, H.

In Proc. Virtual Reality Society of Japan Annual Conference, Osaka, Japan, sep 2013, Paper written in Japanese. Presentation given by Kurihara (inproceedings)

hi

[BibTex]

[BibTex]


no image
Design and development part 2 of Dexto:Eka: - The humanoid robot

Kumra, S., Mohan, M., Gupta, S., Vaswani, H.

In Proceedings of the International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, August 2013 (inproceedings)

Abstract
Through this paper, we elucidate the second phase of the design and development of the tele-operated humanoid robot Dexto:Eka:. Phase one comprised of the development of a 6 DoF left anthropomorphic arm and left exo-frame. Here, we illustrate the development of the right arm, right exo-frame, torso, backbone, human machine interface and omni-directional locomotion system. Dexto:Eka: will be able to communicate with a remote user through Wi-Fi. An exo-frame capacitates it to emulate human arms and its locomotion is controlled by joystick. A Graphical User Interface monitors and helps in controlling the system.

hi

DOI [BibTex]

DOI [BibTex]


no image
Virtual Alteration of Body Material by Reality-Based Periodic Vibrotactile Feedback

Kurihara, Y., Hachisu, T., Sato, M., Fukushima, S., Kuchenbecker, K. J., Kajimoto, H.

In Proc. JSME Robotics and Mechatronics Conference (ROBOMEC), Tsukuba, Japan, May 2013, Paper written in Japanese. Poster presentation given by {Kurihara} (inproceedings)

hi

[BibTex]

[BibTex]


no image
The Design and Field Observation of a Haptic Notification System for Oral Presentations

Tam, D., MacLean, K. E., McGrenere, J., Kuchenbecker, K. J.

In Proc. SIGCHI Conference on Human Factors in Computing Systems, pages: 1689-1698, Paris, France, May 2013, Oral presentation given by Tam (inproceedings)

hi

[BibTex]

[BibTex]


no image
Using Robotic Exploratory Procedures to Learn the Meaning of Haptic Adjectives

Chu, V., McMahon, I., Riano, L., McDonald, C. G., He, Q., Perez-Tejada, J. M., Arrigo, M., Fitter, N., Nappo, J., Darrell, T., Kuchenbecker, K. J.

In Proc. IEEE International Conference on Robotics and Automation, pages: 3048-3055, Karlsruhe, Germany, May 2013, Oral presentation given by Chu. Best Cognitive Robotics Paper Award (inproceedings)

hi

[BibTex]

[BibTex]


no image
Instrument contact vibrations are a construct-valid measure of technical skill in Fundamentals of Laparoscopic Surgery Training Tasks

Gomez, E. D., Aggarwal, R., McMahan, W., Koch, E., Hashimoto, D. A., Darzi, A., Murayama, K. M., Dumon, K. R., Williams, N. N., Kuchenbecker, K. J.

In Proc. Annual Meeting of the Association for Surgical Education, Orlando, Florida, USA, 2013, Oral presentation given by Gomez (inproceedings)

hi

[BibTex]

[BibTex]


no image
Dynamic Simulation of Tool-Mediated Texture Interaction

McDonald, C. G., Kuchenbecker, K. J.

In Proc. IEEE World Haptics Conference, pages: 307-312, Daejeon, South Korea, April 2013, Oral presentation given by McDonald (inproceedings)

hi

[BibTex]

[BibTex]


no image
Generating Haptic Texture Models From Unconstrained Tool-Surface Interactions

Culbertson, H., Unwin, J., Goodman, B. E., Kuchenbecker, K. J.

In Proc. IEEE World Haptics Conference, pages: 295-300, Daejeon, South Korea, April 2013, Oral presentation given by Culbertson. Finalist for Best Paper Award (inproceedings)

hi

[BibTex]

[BibTex]


no image
A practical System for Recording Instrument Contacts and Collisions During Transoral Robotic Surgery

Gomez, E. D., Weinstein, G. S., O’Malley, J. B. W., McMahan, W., Chen, L., Kuchenbecker, K. J.

In Proc. Annual Meeting of the Triological Society, Orlando, Florida, USA, April 2013, Poster presentation given by Gomez (inproceedings)

hi

[BibTex]

[BibTex]


no image
The Randomized Dependence Coefficient

Lopez-Paz, D., Hennig, P., Schölkopf, B.

In Advances in Neural Information Processing Systems 26, pages: 1-9, (Editors: C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

ei pn

PDF [BibTex]

PDF [BibTex]


no image
Fast Probabilistic Optimization from Noisy Gradients

Hennig, P.

In Proceedings of The 30th International Conference on Machine Learning, JMLR W&CP 28(1), pages: 62–70, (Editors: S Dasgupta and D McAllester), ICML, 2013 (inproceedings)

ei pn

PDF [BibTex]

PDF [BibTex]


Nonparametric dynamics estimation for time periodic systems
Nonparametric dynamics estimation for time periodic systems

Klenske, E., Zeilinger, M., Schölkopf, B., Hennig, P.

In Proceedings of the 51st Annual Allerton Conference on Communication, Control, and Computing, pages: 486-493 , 2013 (inproceedings)

ei pn

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Analytical probabilistic proton dose calculation and range uncertainties

Bangert, M., Hennig, P., Oelfke, U.

In 17th International Conference on the Use of Computers in Radiation Therapy, pages: 6-11, (Editors: A. Haworth and T. Kron), ICCR, 2013 (inproceedings)

ei pn

[BibTex]

[BibTex]


Self-tuning in Sliding Mode Control of High-Precision Motion Systems
Self-tuning in Sliding Mode Control of High-Precision Motion Systems

Heertjes, M. F., Vardar, Y.

In IFAC Proceedings Volumes, 46(5):13 - 19, 2013, 6th IFAC Symposium on Mechatronic Systems (inproceedings)

Abstract
In high-precision motion systems, set-point tracking often comes with the problem of overshoot, hence poor settling behavior. To avoid overshoot, PD control (thus without using an integrator) is preferred over PID control. However, PD control gives rise to steady-state error in view of the constant disturbances acting on the system. To deal with both overshoot and steady-state error, a sliding mode controller with saturated integrator is studied. For large servo signals the controller is switched to PD mode as to constrain the integrator buffer and therefore the overshoot. For small servo signals the controller switches to PID mode as to avoid steady-state error. The tuning of the switching parameters will be done automatically with the aim to optimize the settling behavior. The sliding mode controller will be tested on a high-precision motion system.

hi

heertjes_ifac2013 link (url) DOI [BibTex]

heertjes_ifac2013 link (url) DOI [BibTex]


no image
Controllability and Resource-Rational Planning

Lieder, F., Goodman, N. D., Huys, Q. J.

In Computational and Systems Neuroscience (Cosyne), pages: 112, 2013 (inproceedings)

Abstract
Learned helplessness experiments involving controllable vs. uncontrollable stressors have shown that the perceived ability to control events has profound consequences for decision making. Normative models of decision making, however, do not naturally incorporate knowledge about controllability, and previous approaches to incorporating it have led to solutions with biologically implausible computational demands [1,2]. Intuitively, controllability bounds the differential rewards for choosing one strategy over another, and therefore believing that the environment is uncontrollable should reduce one’s willingness to invest time and effort into choosing between options. Here, we offer a normative, resource-rational account of the role of controllability in trading mental effort for expected gain. In this view, the brain not only faces the task of solving Markov decision problems (MDPs), but it also has to optimally allocate its finite computational resources to solve them efficiently. This joint problem can itself be cast as a MDP [3], and its optimal solution respects computational constraints by design. We start with an analytic characterisation of the influence of controllability on the use of computational resources. We then replicate previous results on the effects of controllability on the differential value of exploration vs. exploitation, showing that these are also seen in a cognitively plausible regime of computational complexity. Third, we find that controllability makes computation valuable, so that it is worth investing more mental effort the higher the subjective controllability. Fourth, we show that in this model the perceived lack of control (helplessness) replicates empirical findings [4] whereby patients with major depressive disorder are less likely to repeat a choice that led to a reward, or to avoid a choice that led to a loss. Finally, the model makes empirically testable predictions about the relationship between reaction time and helplessness.

re

[BibTex]

[BibTex]


no image
Learned helplessness and generalization

Lieder, F., Goodman, N. D., Huys, Q. J. M.

In 35th Annual Conference of the Cognitive Science Society, 2013 (inproceedings)

re

[BibTex]

[BibTex]


no image
Reverse-Engineering Resource-Efficient Algorithms

Lieder, F., Goodman, N. D., Griffiths, T. L.

In NIPS Workshop Resource-Efficient Machine Learning, 2013 (inproceedings)

re

[BibTex]

[BibTex]


no image
A Practical System For Recording Instrument Interactions During Live Robotic Surgery

McMahan, W., Gomez, E. D., Chen, L., Bark, K., Nappo, J. C., Koch, E. I., Lee, D. I., Dumon, K., Williams, N., Kuchenbecker, K. J.

In Proc. Medicine Meets Virtual Reality, 2013, Poster presentation given by McMahan (inproceedings)

hi

[BibTex]

[BibTex]

2004


no image
Canceling Induced Master Motion in Force-Reflecting Teleoperation

Kuchenbecker, K. J., Niemeyer, G.

In Proc. ASME International Mechanical Engineering Congress and Exposition, Symposium on Advances in Robot Dynamics and Control, 2, paper number 60049, Anaheim, California, USA, November 2004, Oral presentation given by Kuchenbecker. {B}est Student Paper Award (inproceedings)

hi

[BibTex]

2004


[BibTex]


no image
Haptic Display of Contact Location

Kuchenbecker, K. J., Provancher, W. R., Niemeyer, G., Cutkosky, M. R.

In Proc. IEEE Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pages: 40-47, Chicago, Illinois, USA, March 2004, Oral presentation given by Kuchenbecker (inproceedings)

hi

[BibTex]

[BibTex]


no image
THUMP: An Immersive Haptic Console for Surgical Simulation and Training

Niemeyer, G., Kuchenbecker, K. J., Bonneau, R., Mitra, P., Reid, A., Fiene, J., Weldon, G.

In Proc. Medicine Meets Virtual Reality, pages: 272-274, Newport Beach, California, USA, January 2004, Poster presentation given by Niemeyer. {B}est Poster Award (inproceedings)

hi

[BibTex]

[BibTex]

2003


no image
Characterizing the Human Wrist for Improved Haptic Interaction

Kuchenbecker, K. J., Park, J. G., Niemeyer, G.

In Proc. ASME International Mechanical Engineering Congress and Exposition, Symposium on Advances in Robot Dynamics and Control, 2, paper number 42017, Washington, D.C., USA, November 2003, Oral presentation given by Kuchenbecker (inproceedings)

hi

[BibTex]

2003


[BibTex]