Header logo is


2020


Gripping apparatus and method of producing a gripping apparatus
Gripping apparatus and method of producing a gripping apparatus

Song, S., Sitti, M., Drotlef, D., Majidi, C.

Google Patents, Febuary 2020, US Patent App. 16/610,209 (patent)

Abstract
The present invention relates to a gripping apparatus comprising a membrane; a flexible housing; with said membrane being fixedly connected to a periphery of the housing. The invention further relates to a method of producing a gripping apparatus.

pi

[BibTex]

2020


[BibTex]


Acoustofluidic Tweezers for the 3D Manipulation of Microparticles
Acoustofluidic Tweezers for the 3D Manipulation of Microparticles

Guo, X., Ma, Z., Goyal, R., Jeong, M., Pang, W., Fischer, P., Dian, X., Qiu, T.

In 2020 IEEE International Conference on Robotics and Automation (ICRA),, Febuary 2020 (conference)

Abstract
Non-contact manipulation is of great importance in the actuation of micro-robotics. It is challenging to contactless manipulate micro-scale objects over large spatial distance in fluid. Here, we describe a novel approach for the dynamic position control of microparticles in three-dimensional (3D) space, based on high-speed acoustic streaming generated by a micro-fabricated gigahertz transducer. Due to the vertical lifting force and the horizontal centripetal force generated by the streaming, microparticles are able to be stably trapped at a position far away from the transducer surface, and to be manipulated over centimeter distance in all three directions. Only the hydrodynamic force is utilized in the system for particle manipulation, making it a versatile tool regardless the material properties of the trapped particle. The system shows high reliability and manipulation velocity, revealing its potentials for the applications in robotics and automation at small scales.

pf

[BibTex]

[BibTex]


Method of actuating a shape changeable member, shape changeable member and actuating system
Method of actuating a shape changeable member, shape changeable member and actuating system

Hu, W., Lum, G. Z., Mastrangeli, M., Sitti, M.

Google Patents, January 2020, US Patent App. 16/477,593 (patent)

Abstract
The present invention relates to a method of actuating a shape changeable member of actuatable material. The invention further relates to a shape changeable member and to a system comprising such a shape changeable member and a magnetic field apparatus.

pi

[BibTex]

2001


no image
Survey of nanomanipulation systems

Sitti, M.

In Nanotechnology, 2001. IEEE-NANO 2001. Proceedings of the 2001 1st IEEE Conference on, pages: 75-80, 2001 (inproceedings)

pi

[BibTex]

2001


[BibTex]


no image
Nanotribological characterization system by AFM based controlled pushing

Sitti, M.

In Nanotechnology, 2001. IEEE-NANO 2001. Proceedings of the 2001 1st IEEE Conference on, pages: 99-104, 2001 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Towards flapping wing control for a micromechanical flying insect

Yan, J., Wood, R. J., Avadhanula, S., Sitti, M., Fearing, R. S.

In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, 4, pages: 3901-3908, 2001 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Man-machine interface for micro/nano manipulation with an afm probe

Aruk, B., Hashimoto, H., Sitti, M.

In Nanotechnology, 2001. IEEE-NANO 2001. Proceedings of the 2001 1st IEEE Conference on, pages: 151-156, 2001 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Development of PZT and PZN-PT based unimorph actuators for micromechanical flapping mechanisms

Sitti, M., Campolo, D., Yan, J., Fearing, R. S.

In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, 4, pages: 3839-3846, 2001 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Thorax Design and Wing Control for a Micromechanical Flying Insect

Yan, J, Ayadhanula, S, Sitti, M, Wood, RJ, Fearing, RS

In PROCEEDINGS OF THE ANNUAL ALLERTON CONFERENCE ON COMMUNICATION CONTROL AND COMPUTING, 39(2):952-961, 2001 (inproceedings)

pi

[BibTex]

[BibTex]


no image
PZT actuated four-bar mechanism with two flexible links for micromechanical flying insect thorax

Sitti, M.

In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, 4, pages: 3893-3900, 2001 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Development of a scaled teleoperation system for nano scale interaction and manipulation

Sitti, M., Aruk, B., Shintani, H., Hashimoto, H.

In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, 1, pages: 860-867, 2001 (inproceedings)

pi

[BibTex]

[BibTex]

1999


no image
Tele-touch feedback of surfaces at the micro/nano scale: Modeling and experiments

Sitti, M., Horighuchi, S., Hashimoto, H.

In Intelligent Robots and Systems, 1999. IROS’99. Proceedings. 1999 IEEE/RSJ International Conference on, 2, pages: 882-888, 1999 (inproceedings)

pi

[BibTex]

1999


[BibTex]


no image
Challenge to micro/nanomanipulation using atomic force microscope

Hashimoto, H., Sitti, M.

In Micromechatronics and Human Science, 1999. MHS’99. Proceedings of 1999 International Symposium on, pages: 35-42, 1999 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Visualization interface for AFM-based nano-manipulation

Horiguchi, S., Sitti, M., Hashimoto, H.

In Industrial Electronics, 1999. ISIE’99. Proceedings of the IEEE International Symposium on, 1, pages: 310-315, 1999 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Tele-nanorobotics 2-d manipulation of micro/nanoparticles using afm

Sitti, M., Horiguchi, S., Hashimoto, H.

In Advanced Intelligent Mechatronics, 1999. Proceedings. 1999 IEEE/ASME International Conference on, pages: 786-786, 1999 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Two-dimensional fine particle positioning using a piezoresistive cantilever as a micro/nano-manipulator

Sitti, M., Hashimoto, H.

In Robotics and Automation, 1999. Proceedings. 1999 IEEE International Conference on, 4, pages: 2729-2735, 1999 (inproceedings)

pi

[BibTex]

[BibTex]