Header logo is



Trunk pitch oscillations for energy trade-offs in bipedal running birds and robots
Trunk pitch oscillations for energy trade-offs in bipedal running birds and robots

Drama, Ö., Badri-Spröwitz, A.

Bioinspiration & Biomimetics, 15(3), March 2020 (article)

Abstract
Bipedal animals have diverse morphologies and advanced locomotion abilities. Terrestrial birds, in particular, display agile, efficient, and robust running motion, in which they exploit the interplay between the body segment masses and moment of inertias. On the other hand, most legged robots are not able to generate such versatile and energy-efficient motion and often disregard trunk movements as a means to enhance their locomotion capabilities. Recent research investigated how trunk motions affect the gait characteristics of humans, but there is a lack of analysis across different bipedal morphologies. To address this issue, we analyze avian running based on a spring-loaded inverted pendulum model with a pronograde (horizontal) trunk. We use a virtual point based control scheme and modify the alignment of the ground reaction forces to assess how our control strategy influences the trunk pitch oscillations and energetics of the locomotion. We derive three potential key strategies to leverage trunk pitch motions that minimize either the energy fluctuations of the center of mass or the work performed by the hip and leg. We suggest how these strategies could be used in legged robotics.

dlg

Youtube Video link (url) DOI [BibTex]

Youtube Video link (url) DOI [BibTex]


Effective Viscous Damping Enables Morphological Computation in Legged Locomotion
Effective Viscous Damping Enables Morphological Computation in Legged Locomotion

Mo, A., Izzi, F., Haeufle, D. F. B., Badri-Spröwitz, A.

2020 (article) In revision

Abstract
Muscle models and animal observations suggest that physical damping is beneficial for stabilization. Still, only a few implementations of mechanical damping exist in compliant robotic legged locomotion. It remains unclear how physical damping can be exploited for locomotion tasks, while its advantages as sensor-free, adaptive force- and negative work-producing actuators are promising. In a simplified numerical leg model, we studied the energy dissipation from viscous and Coulomb damping during vertical drops with ground-level perturbations. A parallel spring-damper is engaged between touch-down and mid-stance, and its damper auto-disengages during mid-stance and takeoff. Our simulations indicate that an adjustable and viscous damper is desired. In hardware we explored effective viscous damping and adjustability and quantified the dissipated energy. We tested two mechanical, leg-mounted damping mechanisms; a commercial hydraulic damper, and a custom-made pneumatic damper. The pneumatic damper exploits a rolling diaphragm with an adjustable orifice, minimizing Coulomb damping effects while permitting adjustable resistance. Experimental results show that the leg-mounted, hydraulic damper exhibits the most effective viscous damping. Adjusting the orifice setting did not result in substantial changes of dissipated energy per drop, unlike adjusting damping parameters in the numerical model. Consequently, we also emphasize the importance of characterizing physical dampers during real legged impacts to evaluate their effectiveness for compliant legged locomotion.

dlg

Youtube link (url) [BibTex]


Postural Stability in Human Running with Step-down Perturbations: An Experimental and Numerical Study
Postural Stability in Human Running with Step-down Perturbations: An Experimental and Numerical Study

Oezge Drama, , Johanna Vielemeyer, , Alexander Badri-Spröwitz, , Müller, R.

2020 (article) In revision

Abstract
Postural stability is one of the most crucial elements in bipedal locomotion. Bipeds are dynamically unstable and need to maintain their trunk upright against the rotations induced by the ground reaction forces (GRFs), especially when running. Gait studies report that the GRF vectors focus around a virtual point above the center of mass (VPA), while the trunk moves forward in pitch axis during the stance phase of human running. However, a recent simulation study suggests that a virtual point below the center of mass (VPB) might be present in human running, since a VPA yields backward trunk rotation during the stance phase. In this work, we perform a gait analysis to investigate the existence and location of the VP in human running at 5 m s−1, and support our findings numerically using the spring-loaded inverted pendulum model with a trunk (TSLIP). We extend our analysis to include perturbations in terrain height (visible and camouflaged), and investigate the response of the VP mechanism to step-down perturbations both experimentally and numerically. Our experimental results show that the human running gait displays a VPB of ≈ −30 cm and a forward trunk motion during the stance phase. The camouflaged step-down perturbations affect the location of the VPB. Our simulation results suggest that the VPB is able to encounter the step-down perturbations and bring the system back to its initial equilibrium state.

dlg

link (url) [BibTex]

link (url) [BibTex]

2018


Probabilistic Solutions To Ordinary Differential Equations As Non-Linear Bayesian Filtering: A New Perspective
Probabilistic Solutions To Ordinary Differential Equations As Non-Linear Bayesian Filtering: A New Perspective

Tronarp, F., Kersting, H., Särkkä, S., Hennig, P.

ArXiv preprint 2018, arXiv:1810.03440 [stat.ME], October 2018 (article)

Abstract
We formulate probabilistic numerical approximations to solutions of ordinary differential equations (ODEs) as problems in Gaussian process (GP) regression with non-linear measurement functions. This is achieved by defining the measurement sequence to consists of the observations of the difference between the derivative of the GP and the vector field evaluated at the GP---which are all identically zero at the solution of the ODE. When the GP has a state-space representation, the problem can be reduced to a Bayesian state estimation problem and all widely-used approximations to the Bayesian filtering and smoothing problems become applicable. Furthermore, all previous GP-based ODE solvers, which were formulated in terms of generating synthetic measurements of the vector field, come out as specific approximations. We derive novel solvers, both Gaussian and non-Gaussian, from the Bayesian state estimation problem posed in this paper and compare them with other probabilistic solvers in illustrative experiments.

pn

link (url) Project Page [BibTex]

2018



no image
Convergence Rates of Gaussian ODE Filters

Kersting, H., Sullivan, T. J., Hennig, P.

arXiv preprint 2018, arXiv:1807.09737 [math.NA], July 2018 (article)

Abstract
A recently-introduced class of probabilistic (uncertainty-aware) solvers for ordinary differential equations (ODEs) applies Gaussian (Kalman) filtering to initial value problems. These methods model the true solution $x$ and its first $q$ derivatives a priori as a Gauss--Markov process $\boldsymbol{X}$, which is then iteratively conditioned on information about $\dot{x}$. We prove worst-case local convergence rates of order $h^{q+1}$ for a wide range of versions of this Gaussian ODE filter, as well as global convergence rates of order $h^q$ in the case of $q=1$ and an integrated Brownian motion prior, and analyse how inaccurate information on $\dot{x}$ coming from approximate evaluations of $f$ affects these rates. Moreover, we present explicit formulas for the steady states and show that the posterior confidence intervals are well calibrated in all considered cases that exhibit global convergence---in the sense that they globally contract at the same rate as the truncation error.

pn

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Oncilla robot: a versatile open-source quadruped research robot with compliant pantograph legs
Oncilla robot: a versatile open-source quadruped research robot with compliant pantograph legs

Sproewitz, A., Tuleu, A., Ajallooeian, M., Vespignani, M., Moeckel, R., Eckert, P., D’Haene, M., Degrave, J., Nordmann, A., Schrauwen, B., Steil, J., Ijspeert, A. J.

Frontiers in Robotics and AI, 5(67), June 2018, arXiv: 1803.06259 (article)

Abstract
We present Oncilla robot, a novel mobile, quadruped legged locomotion machine. This large-cat sized, 5.1 robot is one of a kind of a recent, bioinspired legged robot class designed with the capability of model-free locomotion control. Animal legged locomotion in rough terrain is clearly shaped by sensor feedback systems. Results with Oncilla robot show that agile and versatile locomotion is possible without sensory signals to some extend, and tracking becomes robust when feedback control is added (Ajaoolleian 2015). By incorporating mechanical and control blueprints inspired from animals, and by observing the resulting robot locomotion characteristics, we aim to understand the contribution of individual components. Legged robots have a wide mechanical and control design parameter space, and a unique potential as research tools to investigate principles of biomechanics and legged locomotion control. But the hardware and controller design can be a steep initial hurdle for academic research. To facilitate the easy start and development of legged robots, Oncilla-robot's blueprints are available through open-source. [...]

dlg

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Impact of Trunk Orientation  for Dynamic Bipedal Locomotion
Impact of Trunk Orientation for Dynamic Bipedal Locomotion

Drama, Ö.

Dynamic Walking Conference, May 2018 (talk)

Abstract
Impact of trunk orientation for dynamic bipedal locomotion My research revolves around investigating the functional demands of bipedal running, with focus on stabilizing trunk orientation. When we think about postural stability, there are two critical questions we need to answer: What are the necessary and sufficient conditions to achieve and maintain trunk stability? I am concentrating on how morphology affects control strategies in achieving trunk stability. In particular, I denote the trunk pitch as the predominant morphology parameter and explore the requirements it imposes on a chosen control strategy. To analyze this, I use a spring loaded inverted pendulum model extended with a rigid trunk, which is actuated by a hip motor. The challenge for the controller design here is to have a single hip actuator to achieve two coupled tasks of moving the legs to generate motion and stabilizing the trunk. I enforce orthograde and pronograde postures and aim to identify the effect of these trunk orientations on the hip torque and ground reaction profiles for different control strategies.

dlg

Impact of trunk orientation for dynamic bipedal locomotion [DW 2018] link (url) Project Page [BibTex]


no image
Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences

Kanagawa, M., Hennig, P., Sejdinovic, D., Sriperumbudur, B. K.

Arxiv e-prints, arXiv:1805.08845v1 [stat.ML], 2018 (article)

Abstract
This paper is an attempt to bridge the conceptual gaps between researchers working on the two widely used approaches based on positive definite kernels: Bayesian learning or inference using Gaussian processes on the one side, and frequentist kernel methods based on reproducing kernel Hilbert spaces on the other. It is widely known in machine learning that these two formalisms are closely related; for instance, the estimator of kernel ridge regression is identical to the posterior mean of Gaussian process regression. However, they have been studied and developed almost independently by two essentially separate communities, and this makes it difficult to seamlessly transfer results between them. Our aim is to overcome this potential difficulty. To this end, we review several old and new results and concepts from either side, and juxtapose algorithmic quantities from each framework to highlight close similarities. We also provide discussions on subtle philosophical and theoretical differences between the two approaches.

pn ei

arXiv [BibTex]

arXiv [BibTex]


no image
Counterfactual Mean Embedding: A Kernel Method for Nonparametric Causal Inference

Muandet, K., Kanagawa, M., Saengkyongam, S., Marukata, S.

Arxiv e-prints, arXiv:1805.08845v1 [stat.ML], 2018 (article)

Abstract
This paper introduces a novel Hilbert space representation of a counterfactual distribution---called counterfactual mean embedding (CME)---with applications in nonparametric causal inference. Counterfactual prediction has become an ubiquitous tool in machine learning applications, such as online advertisement, recommendation systems, and medical diagnosis, whose performance relies on certain interventions. To infer the outcomes of such interventions, we propose to embed the associated counterfactual distribution into a reproducing kernel Hilbert space (RKHS) endowed with a positive definite kernel. Under appropriate assumptions, the CME allows us to perform causal inference over the entire landscape of the counterfactual distribution. The CME can be estimated consistently from observational data without requiring any parametric assumption about the underlying distributions. We also derive a rate of convergence which depends on the smoothness of the conditional mean and the Radon-Nikodym derivative of the underlying marginal distributions. Our framework can deal with not only real-valued outcome, but potentially also more complex and structured outcomes such as images, sequences, and graphs. Lastly, our experimental results on off-policy evaluation tasks demonstrate the advantages of the proposed estimator.

ei pn

arXiv [BibTex]

arXiv [BibTex]


no image
Model-based Kernel Sum Rule: Kernel Bayesian Inference with Probabilistic Models

Nishiyama, Y., Kanagawa, M., Gretton, A., Fukumizu, K.

Arxiv e-prints, arXiv:1409.5178v2 [stat.ML], 2018 (article)

Abstract
Kernel Bayesian inference is a powerful nonparametric approach to performing Bayesian inference in reproducing kernel Hilbert spaces or feature spaces. In this approach, kernel means are estimated instead of probability distributions, and these estimates can be used for subsequent probabilistic operations (as for inference in graphical models) or in computing the expectations of smooth functions, for instance. Various algorithms for kernel Bayesian inference have been obtained by combining basic rules such as the kernel sum rule (KSR), kernel chain rule, kernel product rule and kernel Bayes' rule. However, the current framework only deals with fully nonparametric inference (i.e., all conditional relations are learned nonparametrically), and it does not allow for flexible combinations of nonparametric and parametric inference, which are practically important. Our contribution is in providing a novel technique to realize such combinations. We introduce a new KSR referred to as the model-based KSR (Mb-KSR), which employs the sum rule in feature spaces under a parametric setting. Incorporating the Mb-KSR into existing kernel Bayesian framework provides a richer framework for hybrid (nonparametric and parametric) kernel Bayesian inference. As a practical application, we propose a novel filtering algorithm for state space models based on the Mb-KSR, which combines the nonparametric learning of an observation process using kernel mean embedding and the additive Gaussian noise model for a state transition process. While we focus on additive Gaussian noise models in this study, the idea can be extended to other noise models, such as the Cauchy and alpha-stable noise models.

pn

arXiv [BibTex]

arXiv [BibTex]


A probabilistic model for the numerical solution of initial value problems
A probabilistic model for the numerical solution of initial value problems

Schober, M., Särkkä, S., Philipp Hennig,

Statistics and Computing, Springer US, 2018 (article)

Abstract
We study connections between ordinary differential equation (ODE) solvers and probabilistic regression methods in statistics. We provide a new view of probabilistic ODE solvers as active inference agents operating on stochastic differential equation models that estimate the unknown initial value problem (IVP) solution from approximate observations of the solution derivative, as provided by the ODE dynamics. Adding to this picture, we show that several multistep methods of Nordsieck form can be recast as Kalman filtering on q-times integrated Wiener processes. Doing so provides a family of IVP solvers that return a Gaussian posterior measure, rather than a point estimate. We show that some such methods have low computational overhead, nontrivial convergence order, and that the posterior has a calibrated concentration rate. Additionally, we suggest a step size adaptation algorithm which completes the proposed method to a practically useful implementation, which we experimentally evaluate using a representative set of standard codes in the DETEST benchmark set.

pn

PDF Code DOI Project Page [BibTex]

2016


Gaussian Process-Based Predictive Control for Periodic Error Correction
Gaussian Process-Based Predictive Control for Periodic Error Correction

Klenske, E. D., Zeilinger, M., Schölkopf, B., Hennig, P.

IEEE Transactions on Control Systems Technology , 24(1):110-121, 2016 (article)

ei pn

PDF DOI [BibTex]

2016


PDF DOI [BibTex]


Dual Control for Approximate Bayesian Reinforcement Learning
Dual Control for Approximate Bayesian Reinforcement Learning

Klenske, E. D., Hennig, P.

Journal of Machine Learning Research, 17(127):1-30, 2016 (article)

ei pn

PDF link (url) [BibTex]

PDF link (url) [BibTex]