Header logo is


2018


no image
Direct Sparse Odometry With Rolling Shutter

Schubert, D., Usenko, V., Demmel, N., Stueckler, J., Cremers, D.

European Conference on Computer Vision (ECCV), September 2018, accepted as oral presentation (conference)

ev

[BibTex]

2018


[BibTex]


no image
Deep Virtual Stereo Odometry: Leveraging Deep Depth Prediction for Monocular Direct Sparse Odometry

Yang, N., Wang, R., Stueckler, J., Cremers, D.

European Conference on Computer Vision (ECCV), September 2018, accepted as oral presentation, arXiv 1807.02570 (conference)

ev

link (url) [BibTex]

link (url) [BibTex]


Thumb xl screen shot 2018 04 18 at 11.01.27 am
Learning from Outside the Viability Kernel: Why we Should Build Robots that can Fail with Grace

Heim, S., Sproewitz, A.

Proceedings of SIMPAR 2018, pages: 55-61, IEEE, 2018 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR), May 2018 (conference)

dlg

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Thumb xl screen shot 2018 02 03 at 9.09.06 am
Shaping in Practice: Training Wheels to Learn Fast Hopping Directly in Hardware

Heim, S., Ruppert, F., Sarvestani, A., Sproewitz, A.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2018, pages: 5076-5081, IEEE, International Conference on Robotics and Automation, May 2018 (inproceedings)

Abstract
Learning instead of designing robot controllers can greatly reduce engineering effort required, while also emphasizing robustness. Despite considerable progress in simulation, applying learning directly in hardware is still challenging, in part due to the necessity to explore potentially unstable parameters. We explore the of concept shaping the reward landscape with training wheels; temporary modifications of the physical hardware that facilitate learning. We demonstrate the concept with a robot leg mounted on a boom learning to hop fast. This proof of concept embodies typical challenges such as instability and contact, while being simple enough to empirically map out and visualize the reward landscape. Based on our results we propose three criteria for designing effective training wheels for learning in robotics.

dlg

Video Youtube link (url) Project Page [BibTex]

Video Youtube link (url) Project Page [BibTex]


no image
The TUM VI Benchmark for Evaluating Visual-Inertial Odometry

Schubert, D., Goll, T., Demmel, N., Usenko, V., Stueckler, J., Cremers, D.

In IEEE International Conference on Intelligent Robots and Systems (IROS), 2018, arXiv:1804.06120 (inproceedings)

ev

[BibTex]

[BibTex]


no image
Variational Network Quantization

Achterhold, J., Koehler, J. M., Schmeink, A., Genewein, T.

In International Conference on Learning Representations , 2018 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Light field intrinsics with a deep encoder-decoder network

Alperovich, A., Johannsen, O., Strecke, M., Goldluecke, B.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Sublabel-accurate convex relaxation with total generalized variation regularization

(DAGM Best Master's Thesis Award)

Strecke, M., Goldluecke, B.

In German Conference on Pattern Recognition (Proc. GCPR), 2018 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]

2016


no image
Robust calibration marker detection in powder bed images from laser beam melting processes

zur Jacobsmühlen, J., Achterhold, J., Kleszczynski, S., Witt, G., Merhof, D.

In 2016 IEEE International Conference on Industrial Technology (ICIT), pages: 910-915, March 2016 (inproceedings)

ev

DOI [BibTex]

2016


DOI [BibTex]


no image
Phase transitions and optimal algorithms in high-dimensional Gaussian mixture clustering

Lesieur, T., De Bacco, C., Banks, J., Krzakala, F., Moore, C., Zdeborová, L.

In Communication, Control, and Computing (Allerton), 2016 54th Annual Allerton Conference on, pages: 601-608, 2016 (inproceedings)

pio

Preprint link (url) [BibTex]

Preprint link (url) [BibTex]


no image
On designing an active tail for body-pitch control in legged robots via decoupling of control objectives

Heim, S. W., Ajallooeian, M., Eckert, P., Vespignani, M., Ijspeert, A.

In ASSISTIVE ROBOTICS: Proceedings of the 18th International Conference on CLAWAR 2015, pages: 256-264, 2016 (inproceedings)

dlg

[BibTex]

[BibTex]


no image
Direct Visual-Inertial Odometry with Stereo Cameras

Usenko, V., Engel, J., Stueckler, J., Cremers, D.

In IEEE International Conference on Robotics and Automation (ICRA), 2016 (inproceedings)

ev

[BibTex]

[BibTex]


no image
CPA-SLAM: Consistent Plane-Model Alignment for Direct RGB-D SLAM

Ma, L., Kerl, C., Stueckler, J., Cremers, D.

In IEEE International Conference on Robotics and Automation (ICRA), 2016 (inproceedings)

ev

[BibTex]

[BibTex]


no image
Unsupervised Learning of Shape-Motion Patterns for Objects in Urban Street Scenes

Klostermann, D., Osep, A., Stueckler, J., Leibe, B.

In British Machine Vision Conference (BMVC), 2016 (inproceedings)

ev

[BibTex]

[BibTex]


no image
Scene Flow Propagation for Semantic Mapping and Object Discovery in Dynamic Street Scenes

Kochanov, D., Osep, A., Stueckler, J., Leibe, B.

In IEEE/RSJ Int. Conference on Intelligent Robots and Systems, IROS, 2016 (inproceedings)

ev

[BibTex]

[BibTex]


no image
Joint Object Pose Estimation and Shape Reconstruction in Urban Street Scenes Using 3D Shape Priors

Engelmann, F., Stueckler, J., Leibe, B.

In Proc. of the German Conference on Pattern Recognition (GCPR), 2016 (inproceedings)

ev

[BibTex]

[BibTex]

2012


no image
Model Learning and Real-Time Tracking Using Multi-Resolution Surfel Maps

Stueckler, J., Behnke, S.

Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2012 (conference)

ev

link (url) [BibTex]

2012


link (url) [BibTex]


Thumb xl screen shot 2018 02 03 at 4.20.18 pm
Development of a Minimalistic Pneumatic Quadruped Robot for Fast Locomotion

Narioka, K., Rosendo, A., Spröwitz, A., Hosoda, K.

In Proceedings of the 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2012, pages: 307-311, IEEE, Guangzhou, 2012 (inproceedings)

Abstract
In this paper, we describe the development of the quadruped robot ”Ken” with the minimalistic and lightweight body design for achieving fast locomotion. We use McKibben pneumatic artificial muscles as actuators, providing high frequency and wide stride motion of limbs, also avoiding problems with overheating. We conducted a preliminary experiment, finding out that the robot can swing its limb over 7.5 Hz without amplitude reduction, nor heat problems. Moreover, the robot realized a several steps of bouncing gait by using simple CPG-based open loop controller, indicating that the robot can generate enough torque to kick the ground and limb contraction to avoid stumbling.

dlg

DOI [BibTex]

DOI [BibTex]


Thumb xl screen shot 2018 02 03 at 7.25.55 pm
Locomotion through Reconfiguration based on Motor Primitives for Roombots Self-Reconfigurable Modular Robots

Bonardi, S., Moeckel, R., Spröwitz, A., Vespignani, M., Ijspeert, A. J.

In Robotics; Proceedings of ROBOTIK 2012; 7th German Conference on, pages: 1-6, 2012 (inproceedings)

Abstract
We present the hardware and reconfiguration experiments for an autonomous self-reconfigurable modular robot called Roombots (RB). RB were designed to form the basis for self-reconfigurable furniture. Each RB module contains three degrees of freedom that have been carefully selected to allow a single module to reach any position on a 2-dimensional grid and to overcome concave corners in a 3-dimensional grid. For the first time we demonstrate locomotion capabilities of single RB modules through reconfiguration with real hardware. The locomotion through reconfiguration is controlled by a planner combining the well-known D* algorithm and composed motor primitives. The novelty of our approach is the use of an online running hierarchical planner closely linked to the real hardware.

dlg

link (url) [BibTex]

link (url) [BibTex]


no image
Bayesian calibration of the hand-eye kinematics of an anthropomorphic robot

Hubert, U., Stueckler, J., Behnke, S.

In Proc. of the 12th IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), pages: 618-624, November 2012 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Shape-Primitive Based Object Recognition and Grasping

Nieuwenhuisen, M., Stueckler, J., Berner, A., Klein, R., Behnke, S.

In Proc. of ROBOTIK, VDE-Verlag, 2012 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Semantic mapping using object-class segmentation of RGB-D images

Stueckler, J., Biresev, N., Behnke, S.

In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pages: 3005-3010, October 2012 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Efficient Mobile Robot Navigation using 3D Surfel Grid Maps

Kläß, J., Stueckler, J., Behnke, S.

In Proc. of ROBOTIK, VDE-Verlag, 2012 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Integrating depth and color cues for dense multi-resolution scene mapping using RGB-D cameras

Stueckler, J., Behnke, S.

In Proc. of the IEEE Int. Conf. on Multisensor Fusion and Integration for Intelligent Systems (MFI), pages: 162-167, sep 2012 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
SURE: Surface Entropy for Distinctive 3D Features

Fiolka, T., Stueckler, J., Klein, D. A., Schulz, D., Behnke, S.

In Proc. of Spatial Cognition, 2012 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Robust Real-Time Registration of RGB-D Images using Multi-Resolution Surfel Representations

Stueckler, J., Behnke, S.

In Proc. of ROBOTIK, VDE-Verlag, 2012 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Adjustable autonomy for mobile teleoperation of personal service robots

Muszynski, S., Stueckler, J., Behnke, S.

In Proc. of the IEEE Int. Symp. on Robot and Human Interactive Communication, pages: 933-940, sep 2012 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Adaptive Multi-cue 3D Tracking of Arbitrary Objects

Garcia, G. M., Klein, D. A., Stueckler, J., Frintrop, S., Cremers, A. B.

In DAGM/OAGM Symposium, 7476, pages: 357-366, Lecture Notes in Computer Science, Springer, 2012 (inproceedings)

ev

[BibTex]

[BibTex]

2008


Thumb xl screen shot 2018 02 03 at 5.40.07 pm
Passive compliant quadruped robot using central pattern generators for locomotion control

Rutishauser, S., Spröwitz, A., Righetti, L., Ijspeert, A. J.

In Proceedings of the 2008 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, pages: 710-715, IEEE, Scottsdale, AZ, 2008 (inproceedings)

Abstract
We present a new quadruped robot, “Cheetah”, featuring three-segment pantographic legs with passive compliant knee joints. Each leg has two degrees of freedom - knee and hip joint can be actuated using proximal mounted RC servo motors, force transmission to the knee is achieved by means of a Bowden cable mechanism. Simple electronics to command the actuators from a desktop computer have been designed in order to test the robot. A Central Pattern Generator (CPG) network has been implemented to generate different gaits. A parameter space search was performed and tested on the robot to optimize forward velocity.

dlg

DOI [BibTex]

2008


DOI [BibTex]


Thumb xl screen shot 2018 02 03 at 6.34.37 pm
Graph signature for self-reconfiguration planning

Asadpour, M., Spröwitz, A., Billard, A., Dillenbourg, P., Ijspeert, A. J.

In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 863-869, IEEE, Nice, 2008 (inproceedings)

Abstract
This project incorporates modular robots as build- ing blocks for furniture that moves and self-reconfigures. The reconfiguration is done using dynamic connection / disconnection of modules and rotations of the degrees of freedom. This paper introduces a new approach to self-reconfiguration planning for modular robots based on the graph signature and the graph edit-distance. The method has been tested in simulation on two type of modules: YaMoR and M-TRAN. The simulation results shows interesting features of the approach, namely rapidly finding a near-optimal solution.

dlg

DOI [BibTex]

DOI [BibTex]


Thumb xl screen shot 2018 02 03 at 6.36.13 pm
An active connection mechanism for modular self-reconfigurable robotic systems based on physical latching

Spröwitz, A., Asadpour, M., Bourquin, Y., Ijspeert, A. J.

In Proceedings on the 2008 IEEE International Conference on Robotics and Automation (ICRA), 2008, pages: 3508-3513, IEEE, Pasadena, CA, 2008 (inproceedings)

Abstract
This article presents a robust and heavy duty physical latching connection mechanism, which can be actuated with DC motors to actively connect and disconnect modular robot units. The special requirements include a lightweight and simple construction providing an active, strong, hermaphrodite, completely retractable connection mechanism with a 90 degree symmetry and a no-energy consumption in the locked state. The mechanism volume is kept small to fit multiple copies into a single modular robot unit and to be used on as many faces of the robot unit as possible. This way several different lattice like modular robot structures are possible. The large selection for dock-able connection positions will likely simplify self-reconfiguration strategies. Tests with the implemented mechanism demonstrate its applicative potential for self-reconfiguring modular robots.

dlg

DOI [BibTex]

DOI [BibTex]


no image
In-lane Localization in Road Networks using Curbs Detected in Omnidirectional Height Images

Stueckler, J., Schulz, H., Behnke, S.

In Proceedings of Robotik 2008, 2008 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Orthogonal wall correction for visual motion estimation

Stueckler, J., Behnke, S.

In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), pages: 1-6, May 2008 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]