Header logo is


2020


Thermal Effects on the Crystallization Kinetics, and Interfacial Adhesion of Single-Crystal Phase-Change Gallium
Thermal Effects on the Crystallization Kinetics, and Interfacial Adhesion of Single-Crystal Phase-Change Gallium

Yunusa, M., Lahlou, A., Sitti, M.

Advanced Materials, Wiley Online Library, 2020 (article)

Abstract
Although substrates play an important role upon crystallization of supercooled liquids, the influences of surface temperature and thermal property have remained elusive. Here, the crystallization of supercooled phase‐change gallium (Ga) on substrates with different thermal conductivity is studied. The effect of interfacial temperature on the crystallization kinetics, which dictates thermo‐mechanical stresses between the substrate and the crystallized Ga, is investigated. At an elevated surface temperature, close to the melting point of Ga, an extended single‐crystal growth of Ga on dielectric substrates due to layering effect and annealing is realized without the application of external fields. Adhesive strength at the interfaces depends on the thermal conductivity and initial surface temperature of the substrates. This insight can be applicable to other liquid metals for industrial applications, and sheds more light on phase‐change memory crystallization.

pi

[BibTex]


no image
Nanoerythrosome-functionalized biohybrid microswimmers

Nicole, Oncay, Yunus, Birgul, Metin Sitti

2020 (article) Accepted

pi

[BibTex]

[BibTex]


Injectable Nanoelectrodes Enable Wireless Deep Brain Stimulation of Native Tissue in Freely Moving Mice
Injectable Nanoelectrodes Enable Wireless Deep Brain Stimulation of Native Tissue in Freely Moving Mice

Kozielski, K. L., Jahanshahi, A., Gilbert, H. B., Yu, Y., Erin, O., Francisco, D., Alosaimi, F., Temel, Y., Sitti, M.

bioRxiv, Cold Spring Harbor Laboratory, 2020 (article)

pi

[BibTex]

[BibTex]


no image
Statistical reprogramming of macroscopic self-assembly with dynamic boundaries

Utku, , Massimo, , Zoey, , Sitti,

2020 (article) Accepted

pi

[BibTex]

[BibTex]


Controlling two-dimensional collective formation and cooperative behavior of magnetic microrobot swarms
Controlling two-dimensional collective formation and cooperative behavior of magnetic microrobot swarms

Dong, X., Sitti, M.

The International Journal of Robotics Research, 2020 (article)

Abstract
Magnetically actuated mobile microrobots can access distant, enclosed, and small spaces, such as inside microfluidic channels and the human body, making them appealing for minimally invasive tasks. Despite their simplicity when scaling down, creating collective microrobots that can work closely and cooperatively, as well as reconfigure their formations for different tasks, would significantly enhance their capabilities such as manipulation of objects. However, a challenge of realizing such cooperative magnetic microrobots is to program and reconfigure their formations and collective motions with under-actuated control signals. This article presents a method of controlling 2D static and time-varying formations among collective self-repelling ferromagnetic microrobots (100 μm to 350 μm in diameter, up to 260 in number) by spatially and temporally programming an external magnetic potential energy distribution at the air–water interface or on solid surfaces. A general design method is introduced to program external magnetic potential energy using ferromagnets. A predictive model of the collective system is also presented to predict the formation and guide the design procedure. With the proposed method, versatile complex static formations are experimentally demonstrated and the programmability and scaling effects of formations are analyzed. We also demonstrate the collective mobility of these magnetic microrobots by controlling them to exhibit bio-inspired collective behaviors such as aggregation, directional motion with arbitrary swarm headings, and rotational swarming motion. Finally, the functions of the produced microrobotic swarm are demonstrated by controlling them to navigate through cluttered environments and complete reconfigurable cooperative manipulation tasks.

pi

DOI [BibTex]


Characterization and Thermal Management of a DC Motor-Driven Resonant Actuator for Miniature Mobile Robots with Oscillating Limbs
Characterization and Thermal Management of a DC Motor-Driven Resonant Actuator for Miniature Mobile Robots with Oscillating Limbs

Colmenares, D., Kania, R., Liu, M., Sitti, M.

arXiv preprint arXiv:2002.00798, 2020 (article)

Abstract
In this paper, we characterize the performance of and develop thermal management solutions for a DC motor-driven resonant actuator developed for flapping wing micro air vehicles. The actuator, a DC micro-gearmotor connected in parallel with a torsional spring, drives reciprocal wing motion. Compared to the gearmotor alone, this design increased torque and power density by 161.1% and 666.8%, respectively, while decreasing the drawn current by 25.8%. Characterization of the actuator, isolated from nonlinear aerodynamic loading, results in standard metrics directly comparable to other actuators. The micro-motor, selected for low weight considerations, operates at high power for limited duration due to thermal effects. To predict system performance, a lumped parameter thermal circuit model was developed. Critical model parameters for this micro-motor, two orders of magnitude smaller than those previously characterized, were identified experimentally. This included the effects of variable winding resistance, bushing friction, speed-dependent forced convection, and the addition of a heatsink. The model was then used to determine a safe operation envelope for the vehicle and to design a weight-optimal heatsink. This actuator design and thermal modeling approach could be applied more generally to improve the performance of any miniature mobile robot or device with motor-driven oscillating limbs or loads.

pi

[BibTex]


Magnetic Resonance Imaging System--Driven Medical Robotics
Magnetic Resonance Imaging System–Driven Medical Robotics

Erin, O., Boyvat, M., Tiryaki, M. E., Phelan, M., Sitti, M.

Advanced Intelligent Systems, 2, Wiley Online Library, 2020 (article)

Abstract
Magnetic resonance imaging (MRI) system–driven medical robotics is an emerging field that aims to use clinical MRI systems not only for medical imaging but also for actuation, localization, and control of medical robots. Submillimeter scale resolution of MR images for soft tissues combined with the electromagnetic gradient coil–based magnetic actuation available inside MR scanners can enable theranostic applications of medical robots for precise image‐guided minimally invasive interventions. MRI‐driven robotics typically does not introduce new MRI instrumentation for actuation but instead focuses on converting already available instrumentation for robotic purposes. To use the advantages of this technology, various medical devices such as untethered mobile magnetic robots and tethered active catheters have been designed to be powered magnetically inside MRI systems. Herein, the state‐of‐the‐art progress, challenges, and future directions of MRI‐driven medical robotic systems are reviewed.

pi

[BibTex]

[BibTex]


Pros and Cons: Magnetic versus Optical Microrobots
Pros and Cons: Magnetic versus Optical Microrobots

Sitti, M., Wiersma, D. S.

Advanced Materials, Wiley Online Library, 2020 (article)

Abstract
Mobile microrobotics has emerged as a new robotics field within the last decade to create untethered tiny robots that can access and operate in unprecedented, dangerous, or hard‐to‐reach small spaces noninvasively toward disruptive medical, biotechnology, desktop manufacturing, environmental remediation, and other potential applications. Magnetic and optical actuation methods are the most widely used actuation methods in mobile microrobotics currently, in addition to acoustic and biological (cell‐driven) actuation approaches. The pros and cons of these actuation methods are reported here, depending on the given context. They can both enable long‐range, fast, and precise actuation of single or a large number of microrobots in diverse environments. Magnetic actuation has unique potential for medical applications of microrobots inside nontransparent tissues at high penetration depths, while optical actuation is suitable for more biotechnology, lab‐/organ‐on‐a‐chip, and desktop manufacturing types of applications with much less surface penetration depth requirements or with transparent environments. Combining both methods in new robot designs can have a strong potential of combining the pros of both methods. There is still much progress needed in both actuation methods to realize the potential disruptive applications of mobile microrobots in real‐world conditions.

pi

[BibTex]

[BibTex]


Selectively Controlled Magnetic Microrobots with Opposing Helices
Selectively Controlled Magnetic Microrobots with Opposing Helices

Giltinan, J., Katsamba, P., Wang, W., Lauga, E., Sitti, M.

Applied Physics Letters, 116, AIP Publishing LLC, 2020 (article)

pi

[BibTex]

[BibTex]


Acoustically powered surface-slipping mobile microrobots
Acoustically powered surface-slipping mobile microrobots

Aghakhani, A., Yasa, O., Wrede, P., Sitti, M.

Proceedings of the National Academy of Sciences, 117, National Acad Sciences, 2020 (article)

Abstract
Untethered synthetic microrobots have significant potential to revolutionize minimally invasive medical interventions in the future. However, their relatively slow speed and low controllability near surfaces typically are some of the barriers standing in the way of their medical applications. Here, we introduce acoustically powered microrobots with a fast, unidirectional surface-slipping locomotion on both flat and curved surfaces. The proposed three-dimensionally printed, bullet-shaped microrobot contains a spherical air bubble trapped inside its internal body cavity, where the bubble is resonated using acoustic waves. The net fluidic flow due to the bubble oscillation orients the microrobot's axisymmetric axis perpendicular to the wall and then propels it laterally at very high speeds (up to 90 body lengths per second with a body length of 25 µm) while inducing an attractive force toward the wall. To achieve unidirectional locomotion, a small fin is added to the microrobot’s cylindrical body surface, which biases the propulsion direction. For motion direction control, the microrobots are coated anisotropically with a soft magnetic nanofilm layer, allowing steering under a uniform magnetic field. Finally, surface locomotion capability of the microrobots is demonstrated inside a three-dimensional circular cross-sectional microchannel under acoustic actuation. Overall, the combination of acoustic powering and magnetic steering can be effectively utilized to actuate and navigate these microrobots in confined and hard-to-reach body location areas in a minimally invasive fashion.

pi

[BibTex]

[BibTex]


Bio-inspired Flexible Twisting Wings Increase Lift and Efficiency of a Flapping Wing Micro Air Vehicle
Bio-inspired Flexible Twisting Wings Increase Lift and Efficiency of a Flapping Wing Micro Air Vehicle

Colmenares, D., Kania, R., Zhang, W., Sitti, M.

arXiv preprint arXiv:2001.11586, 2020 (article)

Abstract
We investigate the effect of wing twist flexibility on lift and efficiency of a flapping-wing micro air vehicle capable of liftoff. Wings used previously were chosen to be fully rigid due to modeling and fabrication constraints. However, biological wings are highly flexible and other micro air vehicles have successfully utilized flexible wing structures for specialized tasks. The goal of our study is to determine if dynamic twisting of flexible wings can increase overall aerodynamic lift and efficiency. A flexible twisting wing design was found to increase aerodynamic efficiency by 41.3%, translational lift production by 35.3%, and the effective lift coefficient by 63.7% compared to the rigid-wing design. These results exceed the predictions of quasi-steady blade element models, indicating the need for unsteady computational fluid dynamics simulations of twisted flapping wings.

pi

[BibTex]

[BibTex]


Cohesive self-organization of mobile microrobotic swarms
Cohesive self-organization of mobile microrobotic swarms

Yigit, B., Alapan, Y., Sitti, M.

arXiv preprint arXiv:1907.05856, 2020 (article)

pi

[BibTex]

[BibTex]


no image
Multifunctional Surface Microrollers for Targeted Cargo Delivery in Physiological Blood Flow

Yunus, , Ugur, , Alp, , Metin,

2020 (article) Accepted

pi

[BibTex]


Bioinspired underwater locomotion of light-driven liquid crystal gels
Bioinspired underwater locomotion of light-driven liquid crystal gels

Shahsavan, H., Aghakhani, A., Zeng, H., Guo, Y., Davidson, Z. S., Priimagi, A., Sitti, M.

Proceedings of the National Academy of Sciences, National Acad Sciences, 2020 (article)

Abstract
Untethered dynamic shape programming and control of soft materials have significant applications in technologies such as soft robots, medical devices, organ-on-a-chip, and optical devices. Here, we present a solution to remotely actuate and move soft materials underwater in a fast, efficient, and controlled manner using photoresponsive liquid crystal gels (LCGs). LCG constructs with engineered molecular alignment show a low and sharp phase-transition temperature and experience considerable density reduction by light exposure, thereby allowing rapid and reversible shape changes. We demonstrate different modes of underwater locomotion, such as crawling, walking, jumping, and swimming, by localized and time-varying illumination of LCGs. The diverse locomotion modes of smart LCGs can provide a new toolbox for designing efficient light-fueled soft robots in fluid-immersed media.

pi

[BibTex]

[BibTex]


Additive manufacturing of cellulose-based materials with continuous, multidirectional stiffness gradients
Additive manufacturing of cellulose-based materials with continuous, multidirectional stiffness gradients

Giachini, P., Gupta, S., Wang, W., Wood, D., Yunusa, M., Baharlou, E., Sitti, M., Menges, A.

Science Advances, 6, American Association for the Advancement of Science, 2020 (article)

Abstract
Functionally graded materials (FGMs) enable applications in fields such as biomedicine and architecture, but their fabrication suffers from shortcomings in gradient continuity, interfacial bonding, and directional freedom. In addition, most commercial design software fail to incorporate property gradient data, hindering explorations of the design space of FGMs. Here, we leveraged a combined approach of materials engineering and digital processing to enable extrusion-based multimaterial additive manufacturing of cellulose-based tunable viscoelastic materials with continuous, high-contrast, and multidirectional stiffness gradients. A method to engineer sets of cellulose-based materials with similar compositions, yet distinct mechanical and rheological properties, was established. In parallel, a digital workflow was developed to embed gradient information into design models with integrated fabrication path planning. The payoff of integrating these physical and digital tools is the ability to achieve the same stiffness gradient in multiple ways, opening design possibilities previously limited by the rigid coupling of material and geometry.

pi

[BibTex]

[BibTex]

2018


Swimming Back and Forth Using Planar Flagellar Propulsion at Low Reynolds Numbers
Swimming Back and Forth Using Planar Flagellar Propulsion at Low Reynolds Numbers

Khalil, I. S. M., Tabak, A. F., Hamed, Y., Mitwally, M. E., Tawakol, M., Klingner, A., Sitti, M.

Advanced Science, 5(2):1700461, 2018 (article)

Abstract
Abstract Peritrichously flagellated Escherichia coli swim back and forth by wrapping their flagella together in a helical bundle. However, other monotrichous bacteria cannot swim back and forth with a single flagellum and planar wave propagation. Quantifying this observation, a magnetically driven soft two‐tailed microrobot capable of reversing its swimming direction without making a U‐turn trajectory or actively modifying the direction of wave propagation is designed and developed. The microrobot contains magnetic microparticles within the polymer matrix of its head and consists of two collinear, unequal, and opposite ultrathin tails. It is driven and steered using a uniform magnetic field along the direction of motion with a sinusoidally varying orthogonal component. Distinct reversal frequencies that enable selective and independent excitation of the first or the second tail of the microrobot based on their tail length ratio are found. While the first tail provides a propulsive force below one of the reversal frequencies, the second is almost passive, and the net propulsive force achieves flagellated motion along one direction. On the other hand, the second tail achieves flagellated propulsion along the opposite direction above the reversal frequency.

pi

link (url) DOI [BibTex]

2018


link (url) DOI [BibTex]


Universal Custom Complex Magnetic Spring Design Methodology
Universal Custom Complex Magnetic Spring Design Methodology

Woodward, M. A., Sitti, M.

IEEE Transactions on Magnetics, 54(1):1-13, October 2018 (article)

Abstract
A design methodology is presented for creating custom complex magnetic springs through the design of force-displacement curves. This methodology results in a magnet configuration, which will produce a desired force-displacement relationship. Initially, the problem is formulated and solved as a system of linear equations. Then, given the limited likelihood of a single solution being feasibly manufactured, key parameters of the solution are extracted and varied to create a family of solutions. Finally, these solutions are refined using numerical optimization. Given the properties of magnets, this methodology can create any well-defined function of force versus displacement and is model-independent. To demonstrate this flexibility, a number of example magnetic springs are designed; one of which, designed for use in a jumping-gliding robot's shape memory alloy actuated clutch, is manufactured and experimentally characterized. Due to the scaling of magnetic forces, the displacement region which these magnetic springs are most applicable is that of millimeters and below. However, this region is well situated for miniature robots and smart material actuators, where a tailored magnetic spring, designed to compliment a component, can enhance its performance while adding new functionality. The methodology is also expendable to variable interactions and multi-dimensional magnetic field design.

pi

DOI [BibTex]

DOI [BibTex]


 Programmable collective behavior in dynamically self-assembled mobile microrobotic swarms
Programmable collective behavior in dynamically self-assembled mobile microrobotic swarms

B Yigit, , Y Alapan, , Sitti, M.

Advanced Science, July 2018 (article)

Abstract
Collective control of mobile microrobotic swarms is indispensable for their potential high-impact applications in targeted drug delivery, medical diagnostics, parallel micromanipulation, and environmental sensing and remediation. Lack of on-board computational and sensing capabilities in current microrobotic systems necessitates use of physical interactions among individual microrobots for local physical communication and cooperation. Here, we show that mobile microrobotic swarms with well-defined collective behavior can be designed by engineering magnetic interactions among individual units. Microrobots, consisting of a linear chain of self-assembled magnetic microparticles, locomote on surfaces in response to a precessing magnetic field. Control over the direction of precessing magnetic field allows engineering attractive and repulsive interactions among microrobots and, thus, collective order with well-defined spatial organization and parallel operation over macroscale distances (~ 1 cm). These microrobotic swarms can be guided through confined spaces, while preserving microrobot morphology and function. These swarms can further achieve directional transport of large cargoes on surfaces and small cargoes in bulk fluids. Described design approach, exploiting physical interactions among individual robots, enables facile and rapid formation of self-organized and reconfigurable microrobotic swarms with programmable collective order.

pi

link (url) [BibTex]


3D-Printed Biodegradable Microswimmer for Drug Delivery and Targeted Cell Labeling
3D-Printed Biodegradable Microswimmer for Drug Delivery and Targeted Cell Labeling

Hakan Ceylan, , I. Ceren Yasa, , Oncay Yasa, , Ahmet Fatih Tabak, , Joshua Giltinan, , Sitti, M.

bioRxiv, pages: 379024, July 2018 (article)

Abstract
Miniaturization of interventional medical devices can leverage minimally invasive technologies by enabling operational resolution at cellular length scales with high precision and repeatability. Untethered micron-scale mobile robots can realize this by navigating and performing in hard-to-reach, confined and delicate inner body sites. However, such a complex task requires an integrated design and engineering strategy, where powering, control, environmental sensing, medical functionality and biodegradability need to be considered altogether. The present study reports a hydrogel-based, biodegradable microrobotic swimmer, which is responsive to the changes in its microenvironment for theranostic cargo delivery and release tasks. We design a double-helical magnetic microswimmer of 20 micrometers length, which is 3D-printed with complex geometrical and compositional features. At normal physiological concentrations, matrix metalloproteinase-2 (MMP-2) enzyme can entirely degrade the microswimmer body in 118 h to solubilized non-toxic products. The microswimmer can respond to the pathological concentrations of MMP-2 by swelling and thereby accelerating the release kinetics of the drug payload. Anti-ErbB 2 antibody-tagged magnetic nanoparticles released from the degraded microswimmers serve for targeted labeling of SKBR3 breast cancer cells to realize the potential of medical imaging of local tissue sites following the therapeutic intervention. These results represent a leap forward toward clinical medical microrobots that are capable of sensing, responding to the local pathological information, and performing specific therapeutic and diagnostic tasks as orderly executed operations using their smart composite material architectures.

pi

DOI Project Page [BibTex]


Innate turning preference of leaf-cutting ants in the absence of external orientation cues
Innate turning preference of leaf-cutting ants in the absence of external orientation cues

Endlein, T., Sitti, M.

Journal of Experimental Biology, The Company of Biologists Ltd, June 2018 (article)

Abstract
Many ants use a combination of cues for orientation but how do ants find their way when all external cues are suppressed? Do they walk in a random way or are their movements spatially oriented? Here we show for the first time that leaf-cutting ants (Acromyrmex lundii) have an innate preference of turning counter-clockwise (left) when external cues are precluded. We demonstrated this by allowing individual ants to run freely on the water surface of a newly-developed treadmill. The surface tension supported medium-sized workers but effectively prevented ants from reaching the wall of the vessel, important to avoid wall-following behaviour (thigmotaxis). Most ants ran for minutes on the spot but also slowly turned counter-clockwise in the absence of visual cues. Reconstructing the effectively walked path revealed a looping pattern which could be interpreted as a search strategy. A similar turning bias was shown for groups of ants in a symmetrical Y-maze where twice as many ants chose the left branch in the absence of optical cues. Wall-following behaviour was tested by inserting a coiled tube before the Y-fork. When ants traversed a left-coiled tube, more ants chose the left box and vice versa. Adding visual cues in form of vertical black strips either outside the treadmill or on one branch of the Y-maze led to oriented walks towards the strips. It is suggested that both, the turning bias and the wall-following are employed as search strategies for an unknown environment which can be overridden by visual cues.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Motility and chemotaxis of bacteria-driven microswimmers fabricated using antigen 43-mediated biotin display
Motility and chemotaxis of bacteria-driven microswimmers fabricated using antigen 43-mediated biotin display

Schauer, O., Mostaghaci, B., Colin, R., Hürtgen, D., Kraus, D., Sitti, M., Sourjik, V.

Scientific Reports, 8(1):9801, Nature Publishing Group, June 2018 (article)

Abstract
Bacteria-driven biohybrid microswimmers (bacteriabots) combine synthetic cargo with motile living bacteria that enable propulsion and steering. Although fabrication and potential use of such bacteriabots have attracted much attention, existing methods of fabrication require an extensive sample preparation that can drastically decrease the viability and motility of bacteria. Moreover, chemotactic behavior of bacteriabots in a liquid medium with chemical gradients has remained largely unclear. To overcome these shortcomings, we designed Escherichia coli to autonomously display biotin on its cell surface via the engineered autotransporter antigen 43 and thus to bind streptavidin-coated cargo. We show that the cargo attachment to these bacteria is greatly enhanced by motility and occurs predominantly at the cell poles, which is greatly beneficial for the fabrication of motile bacteriabots. We further performed a systemic study to understand and optimize the ability of these bacteriabots to follow chemical gradients. We demonstrate that the chemotaxis of bacteriabots is primarily limited by the cargo-dependent reduction of swimming speed and show that the fabrication of bacteriabots using elongated E. coli cells can be used to overcome this limitation.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Multifunctional ferrofluid-infused surfaces with reconfigurable multiscale topography
Multifunctional ferrofluid-infused surfaces with reconfigurable multiscale topography

Wang, W., Timonen, J. V. I., Carlson, A., Drotlef, D., Zhang, C. T., Kolle, S., Grinthal, A., Wong, T., Hatton, B., Kang, S. H., Kennedy, S., Chi, J., Blough, R. T., Sitti, M., Mahadevan, L., Aizenberg, J.

Nature, June 2018 (article)

Abstract
Developing adaptive materials with geometries that change in response to external stimuli provides fundamental insights into the links between the physical forces involved and the resultant morphologies and creates a foundation for technologically relevant dynamic systems1,2. In particular, reconfigurable surface topography as a means to control interfacial properties 3 has recently been explored using responsive gels 4 , shape-memory polymers 5 , liquid crystals6-8 and hybrid composites9-14, including magnetically active slippery surfaces12-14. However, these designs exhibit a limited range of topographical changes and thus a restricted scope of function. Here we introduce a hierarchical magneto-responsive composite surface, made by infiltrating a ferrofluid into a microstructured matrix (termed ferrofluid-containing liquid-infused porous surfaces, or FLIPS). We demonstrate various topographical reconfigurations at multiple length scales and a broad range of associated emergent behaviours. An applied magnetic-field gradient induces the movement of magnetic nanoparticles suspended in the ferrofluid, which leads to microscale flow of the ferrofluid first above and then within the microstructured surface. This redistribution changes the initially smooth surface of the ferrofluid (which is immobilized by the porous matrix through capillary forces) into various multiscale hierarchical topographies shaped by the size, arrangement and orientation of the confining microstructures in the magnetic field. We analyse the spatial and temporal dynamics of these reconfigurations theoretically and experimentally as a function of the balance between capillary and magnetic pressures15-19 and of the geometric anisotropy of the FLIPS system. Several interesting functions at three different length scales are demonstrated: self-assembly of colloidal particles at the micrometre scale; regulated flow of liquid droplets at the millimetre scale; and switchable adhesion and friction, liquid pumping and removal of biofilms at the centimetre scale. We envision that FLIPS could be used as part of integrated control systems for the manipulation and transport of matter, thermal management, microfluidics and fouling-release materials.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Self-Sensing Paper Actuators Based on Graphite–Carbon Nanotube Hybrid Films
Self-Sensing Paper Actuators Based on Graphite–Carbon Nanotube Hybrid Films

Amjadi, M., Sitti, M.

Advanced Science, pages: 1800239, May 2018 (article)

Abstract
Abstract Soft actuators have demonstrated potential in a range of applications, including soft robotics, artificial muscles, and biomimetic devices. However, the majority of current soft actuators suffer from the lack of real-time sensory feedback, prohibiting their effective sensing and multitask function. Here, a promising strategy is reported to design bilayer electrothermal actuators capable of simultaneous actuation and sensation (i.e., self-sensing actuators), merely through two input electric terminals. Decoupled electrothermal stimulation and strain sensation is achieved by the optimal combination of graphite microparticles and carbon nanotubes (CNTs) in the form of hybrid films. By finely tuning the charge transport properties of hybrid films, the signal-to-noise ratio (SNR) of self-sensing actuators is remarkably enhanced to over 66. As a result, self-sensing actuators can actively track their displacement and distinguish the touch of soft and hard objects.

pi

link (url) DOI Project Page [BibTex]


Soft erythrocyte-based bacterial microswimmers for cargo delivery
Soft erythrocyte-based bacterial microswimmers for cargo delivery

Alapan, Y., Yasa, O., Schauer, O., Giltinan, J., Tabak, A. F., Sourjik, V., Sitti, M.

Science Robotics, 3(17):eaar4423, Science Robotics, April 2018 (article)

Abstract
Bacteria-propelled biohybrid microswimmers have recently shown to be able to actively transport and deliver cargos encapsulated into their synthetic constructs to specific regions locally. However, usage of synthetic materials as cargo carriers can result in inferior performance in load-carrying efficiency, biocompatibility, and biodegradability, impeding clinical translation of biohybrid microswimmers. Here, we report construction and external guidance of bacteria-driven microswimmers using red blood cells (RBCs; erythrocytes) as autologous cargo carriers for active and guided drug delivery. Multifunctional biohybrid microswimmers were fabricated by attachment of RBCs [loaded with anticancer doxorubicin drug molecules and superparamagnetic iron oxide nanoparticles (SPIONs)] to bioengineered motile bacteria, Escherichia coli MG1655, via biotin-avidin-biotin binding complex. Autonomous and on-board propulsion of biohybrid microswimmers was provided by bacteria, and their external magnetic guidance was enabled by SPIONs loaded into the RBCs. Furthermore, bacteria-driven RBC microswimmers displayed preserved deformability and attachment stability even after squeezing in microchannels smaller than their sizes, as in the case of bare RBCs. In addition, an on-demand light-activated hyperthermia termination switch was engineered for RBC microswimmers to control bacteria population after operations. RBCs, as biological and autologous cargo carriers in the biohybrid microswimmers, offer notable advantages in stability, deformability, biocompatibility, and biodegradability over synthetic cargo-carrier materials. The biohybrid microswimmer design presented here transforms RBCs from passive cargo carriers into active and guidable cargo carriers toward targeted drug and other cargo delivery applications in medicine.

pi

link (url) DOI Project Page Project Page [BibTex]

link (url) DOI Project Page Project Page [BibTex]


no image
Miniature soft robots – road to the clinic

Sitti, M.

Nature Reviews Materials, April 2018 (article)

Abstract
Soft small robots offer the opportunity to non-invasively access human tissue to perform medical operations and deliver drugs; however, challenges in materials design, biocompatibility and function control remain to be overcome for soft robots to reach the clinic.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Wrinkling Instability and Adhesion of a Highly Bendable Gallium Oxide Nanofilm Encapsulating a Liquid-Gallium Droplet
Wrinkling Instability and Adhesion of a Highly Bendable Gallium Oxide Nanofilm Encapsulating a Liquid-Gallium Droplet

Yunusa, M., Amador, G. J., Drotlef, D., Sitti, M.

Nano Letters, 18(4):2498-2504, March 2018 (article)

Abstract
The wrinkling and interfacial adhesion mechanics of a gallium-oxide nanofilm encapsulating a liquid-gallium droplet are presented. The native oxide nanofilm provides mechanical stability by preventing the flow of the liquid metal. We show how a crumpled oxide skin a few nanometers thick behaves akin to a highly bendable elastic nanofilm under ambient conditions. Upon compression, a wrinkling instability emerges at the contact interface to relieve the applied stress. As the load is further increased, radial wrinkles evolve, and, eventually, the oxide nanofilm ruptures. The observed wrinkling closely resembles the instability experienced by nanofilms under axisymmetric loading, thus providing further insights into the behaviors of elastic nanofilms. Moreover, the mechanical attributes of the oxide skin enable high surface conformation by exhibiting liquid-like behavior. We measured an adhesion energy of 0.238 ± 0.008 J m–2 between a liquid-gallium droplet and smooth flat glass, which is close to the measurements of thin-sheet nanomaterials such as graphene on silicon dioxide.

pi

link (url) DOI [BibTex]


Magnetic-Visual Sensor Fusion-based Dense 3D Reconstruction and Localization for Endoscopic Capsule Robots
Magnetic-Visual Sensor Fusion-based Dense 3D Reconstruction and Localization for Endoscopic Capsule Robots

Turan, M., Almalioglu, Y., Ornek, E. P., Araujo, H., Yanik, M. F., Sitti, M.

ArXiv e-prints, March 2018 (article)

Abstract
Reliable and real-time 3D reconstruction and localization functionality is a crucial prerequisite for the navigation of actively controlled capsule endoscopic robots as an emerging, minimally invasive diagnostic and therapeutic technology for use in the gastrointestinal (GI) tract. In this study, we propose a fully dense, non-rigidly deformable, strictly real-time, intraoperative map fusion approach for actively controlled endoscopic capsule robot applications which combines magnetic and vision-based localization, with non-rigid deformations based frame-to-model map fusion. The performance of the proposed method is demonstrated using four different ex-vivo porcine stomach models. Across different trajectories of varying speed and complexity, and four different endoscopic cameras, the root mean square surface reconstruction errors 1.58 to 2.17 cm.

pi

link (url) [BibTex]

link (url) [BibTex]


Unsupervised Odometry and Depth Learning for Endoscopic Capsule Robots
Unsupervised Odometry and Depth Learning for Endoscopic Capsule Robots

Turan, M., Ornek, E. P., Ibrahimli, N., Giracoglu, C., Almalioglu, Y., Yanik, M. F., Sitti, M.

ArXiv e-prints, March 2018 (article)

Abstract
In the last decade, many medical companies and research groups have tried to convert passive capsule endoscopes as an emerging and minimally invasive diagnostic technology into actively steerable endoscopic capsule robots which will provide more intuitive disease detection, targeted drug delivery and biopsy-like operations in the gastrointestinal(GI) tract. In this study, we introduce a fully unsupervised, real-time odometry and depth learner for monocular endoscopic capsule robots. We establish the supervision by warping view sequences and assigning the re-projection minimization to the loss function, which we adopt in multi-view pose estimation and single-view depth estimation network. Detailed quantitative and qualitative analyses of the proposed framework performed on non-rigidly deformable ex-vivo porcine stomach datasets proves the effectiveness of the method in terms of motion estimation and depth recovery.

pi

link (url) [BibTex]

link (url) [BibTex]


Self‐Folded Hydrogel Tubes for Implantable Muscular Tissue Scaffolds
Self‐Folded Hydrogel Tubes for Implantable Muscular Tissue Scaffolds

Vannozzi, L., Yasa, I. C., Ceylan, H., Menciassi, A., Ricotti, L., Sitti, M.

Macromolecular Bioscience, (0), March 2018 (article)

Abstract
Abstract Programming materials with tunable physical and chemical interactions among its components pave the way of generating 3D functional active microsystems with various potential applications in tissue engineering, drug delivery, and soft robotics. Here, the development of a recapitulated fascicle‐like implantable muscle construct by programmed self‐folding of poly(ethylene glycol) diacrylate hydrogels is reported. The system comprises two stacked layers, each with differential swelling degrees, stiffnesses, and thicknesses in 2D, which folds into a 3D tube together. Inside the tubes, muscle cell adhesion and their spatial alignment are controlled. Both skeletal and cardiac muscle cells also exhibit high viability, and cardiac myocytes preserve their contractile function over the course of 7 d. Integration of biological cells with smart, shape‐changing materials could give rise to the development of new cellular constructs for hierarchical tissue assembly, drug testing platforms, and biohybrid actuators that can perform sophisticated tasks.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Redox metals homeostasis in multiple sclerosis and amyotrophic lateral sclerosis: a review
Redox metals homeostasis in multiple sclerosis and amyotrophic lateral sclerosis: a review

Sheykhansari, S., Kozielski, K., Bill, J., Sitti, M., Gemmati, D., Zamboni, P., Singh, A. V.

Cell Death \& Disease, 9(3):348, March 2018 (article)

Abstract
The effect of redox metals such as iron and copper on multiple sclerosis and amyotrophic lateral sclerosis has been intensively studied. However, the origin of these disorders remains uncertain. This review article critically describes the physiology of redox metals that produce oxidative stress, which in turn leads to cascades of immunomodulatory alteration of neurons in multiple sclerosis and amyotrophic lateral sclerosis. Iron and copper overload has been well established in motor neurons of these diseases' lesions. On the other hand, the role of other metals like cadmium participating indirectly in the redox cascade of neurobiological mechanism is less studied. In the second part of this review, we focus on this less conspicuous correlation between cadmium as an inactive-redox metal and multiple sclerosis and amyotrophic lateral sclerosis, providing novel treatment modalities and approaches as future prospects.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Cancer cells biomineralize ionic gold into nanoparticles-microplates via secreting defense proteins with specific gold-binding peptides
Cancer cells biomineralize ionic gold into nanoparticles-microplates via secreting defense proteins with specific gold-binding peptides

Singh, A. V., Jahnke, T., Kishore, V., Park, B., Batuwangala, M., Bill, J., Sitti, M.

Acta Biomaterialia, March 2018 (article)

Abstract
Cancer cells have the capacity to synthesize nanoparticles (NPs). The detailed mechanism of this process is not very well documented. We report the mechanism of biomineralization of aqueous gold chloride into NPs and microplates in the breast-cancer cell line MCF7. Spherical gold NPs are synthesized in these cells in the presence of serum in the culture media by the reduction of HAuCl4. In the absence of serum, the cells exhibit gold microplate formation through seed-mediate growth albeit slower reduction. The structural characteristics of the two types of NPs under different media conditions were confirmed using scanning electron microscopy (SEM); crystallinity and metallic properties were assessed with transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS). Gold-reducing proteins, related to cell stress initiate the biomineralization of HAuCl4 in cells (under serum free conditions) as confirmed by infrared (IR) spectroscopy. MCF7 cells undergo irreversible replicative senescence when exposed to a high concentration of ionic gold and conversely remain in a dormant reversible quiescent state when exposed to a low gold concentration. The latter cellular state was achievable in the presence of the rho/ROCK inhibitor Y-27632. Proteomic analysis revealed consistent expression of specific proteins under serum and serum-free conditions. A high-throughput proteomic approach to screen gold-reducing proteins and peptide sequences was utilized and validated by quartz crystal microbalance with dissipation (QCM-D). Statement of significance Cancer cells are known to synthesize gold nanoparticles and microstructures, which are promising for bioimaging and other therapeutic applications. However, the detailed mechanism of such biomineralization process is not well understood yet. Herein, we demonstrate that cancer cells exposed to gold ions (grown in serum/serum-free conditions) secrete shock and stress-related proteins with specific gold-binding/reducing polypeptides. Cells undergo reversible senescence and can recover normal physiology when treated with the senescence inhibitor depending on culture condition. The use of mammalian cells as microincubators for synthesis of such particles could have potential influence on their uptake and biocompatibility. This study has important implications for in-situ reduction of ionic gold to anisotropic micro-nanostructures that could be used in-vivo clinical applications and tumor photothermal therapy.

pi

link (url) DOI [BibTex]


Thermocapillary-driven fluid flow within microchannels
Thermocapillary-driven fluid flow within microchannels

Amador, G. J., Tabak, A. F., Ren, Z., Alapan, Y., Yasa, O., Sitti, M.

ArXiv e-prints, Febuary 2018 (article)

Abstract
Surface tension gradients induce Marangoni flow, which may be exploited for fluid transport. At the micrometer scale, these surface-driven flows can be more significant than those driven by pressure. By introducing fluid-fluid interfaces on the walls of microfluidic channels, we use surface tension gradients to drive bulk fluid flows. The gradients are specifically induced through thermal energy, exploiting the temperature dependence of a fluid-fluid interface to generate thermocapillary flow. In this report, we provide the design concept for a biocompatible, thermocapillary microchannel capable of being powered by solar irradiation. Using temperature gradients on the order of degrees Celsius per centimeter, we achieve fluid velocities on the order of millimeters per second. Following experimental observations, fluid dynamic models, and numerical simulation, we find that the fluid velocity is linearly proportional to the provided temperature gradient, enabling full control of the fluid flow within the microchannels.

pi

link (url) Project Page [BibTex]


Sparse-then-dense alignment-based 3D map reconstruction method for endoscopic capsule robots
Sparse-then-dense alignment-based 3D map reconstruction method for endoscopic capsule robots

Turan, M., Pilavci, Y. Y., Ganiyusufoglu, I., Araujo, H., Konukoglu, E., Sitti, M.

Machine Vision and Applications, 29(2):345-359, Febuary 2018 (article)

Abstract
Despite significant progress achieved in the last decade to convert passive capsule endoscopes to actively controllable robots, robotic capsule endoscopy still has some challenges. In particular, a fully dense three-dimensional (3D) map reconstruction of the explored organ remains an unsolved problem. Such a dense map would help doctors detect the locations and sizes of the diseased areas more reliably, resulting in more accurate diagnoses. In this study, we propose a comprehensive medical 3D reconstruction method for endoscopic capsule robots, which is built in a modular fashion including preprocessing, keyframe selection, sparse-then-dense alignment-based pose estimation, bundle fusion, and shading-based 3D reconstruction. A detailed quantitative analysis is performed using a non-rigid esophagus gastroduodenoscopy simulator, four different endoscopic cameras, a magnetically activated soft capsule robot, a sub-millimeter precise optical motion tracker, and a fine-scale 3D optical scanner, whereas qualitative ex-vivo experiments are performed on a porcine pig stomach. To the best of our knowledge, this study is the first complete endoscopic 3D map reconstruction approach containing all of the necessary functionalities for a therapeutically relevant 3D map reconstruction.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Independent Actuation of Two-Tailed Microrobots
Independent Actuation of Two-Tailed Microrobots

Khalil, I. S. M., Tabak, A. F., Hamed, Y., Tawakol, M., Klingner, A., Gohary, N. E., Mizaikoff, B., Sitti, M.

IEEE Robotics and Automation Letters, 3(3):1703-1710, Febuary 2018 (article)

Abstract
A soft two-tailed microrobot in low Reynolds number fluids does not achieve forward locomotion by identical tails regardless to its wiggling frequency. If the tails are nonidentical, zero forward locomotion is also observed at specific oscillation frequencies (which we refer to as the reversal frequencies), as the propulsive forces imparted to the fluid by each tail are almost equal in magnitude and opposite in direction. We find distinct reversal frequencies for the two-tailed microrobots based on their tail length ratio. At these frequencies, the microrobot achieves negligible net displacement under the influence of a periodic magnetic field. This observation allows us to fabricate groups of microrobots with tail length ratio of 1.24 ± 0.11, 1.48 ± 0.08, and 1.71 ± 0.09. We demonstrate selective actuation of microrobots based on prior characterization of their reversal frequencies. We also implement simultaneous flagellar propulsion of two microrobots and show that they can be controlled to swim along the same direction and opposite to each other using common periodic magnetic fields. In addition, independent motion control of two microrobots is achieved toward two different reference positions with average steady-state error of 110.1 ± 91.8 μm and 146.9 ± 105.9 μm.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Recent Advances in Wearable Transdermal Delivery Systems
Recent Advances in Wearable Transdermal Delivery Systems

Amjadi, M., Sheykhansari, S., Nelson, B. J., Sitti, M.

Advanced Materials, 30(7):1704530, January 2018 (article)

Abstract
Abstract Wearable transdermal delivery systems have recently received tremendous attention due to their noninvasive, convenient, and prolonged administration of pharmacological agents. Here, the material prospects, fabrication processes, and drug‐release mechanisms of these types of therapeutic delivery systems are critically reviewed. The latest progress in the development of multifunctional wearable devices capable of closed‐loop sensation and drug delivery is also discussed. This survey reveals that wearable transdermal delivery has already made an impact in diverse healthcare applications, while several grand challenges remain.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Deep EndoVO: A recurrent convolutional neural network (RCNN) based visual odometry approach for endoscopic capsule robots
Deep EndoVO: A recurrent convolutional neural network (RCNN) based visual odometry approach for endoscopic capsule robots

Turan, M., Almalioglu, Y., Araujo, H., Konukoglu, E., Sitti, M.

Neurocomputing, 275, pages: 1861 - 1870, January 2018 (article)

Abstract
Ingestible wireless capsule endoscopy is an emerging minimally invasive diagnostic technology for inspection of the GI tract and diagnosis of a wide range of diseases and pathologies. Medical device companies and many research groups have recently made substantial progresses in converting passive capsule endoscopes to active capsule robots, enabling more accurate, precise, and intuitive detection of the location and size of the diseased areas. Since a reliable real time pose estimation functionality is crucial for actively controlled endoscopic capsule robots, in this study, we propose a monocular visual odometry (VO) method for endoscopic capsule robot operations. Our method lies on the application of the deep recurrent convolutional neural networks (RCNNs) for the visual odometry task, where convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are used for the feature extraction and inference of dynamics across the frames, respectively. Detailed analyses and evaluations made on a real pig stomach dataset proves that our system achieves high translational and rotational accuracies for different types of endoscopic capsule robot trajectories.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Small-scale soft-bodied robot with multimodal locomotion
Small-scale soft-bodied robot with multimodal locomotion

Hu, W., Lum, G. Z., Mastrangeli, M., Sitti, M.

Nature, 554, pages: 81-85, Nature, January 2018 (article)

Abstract
Untethered small-scale (from several millimetres down to a few micrometres in all dimensions) robots that can non-invasively access confined, enclosed spaces may enable applications in microfactories such as the construction of tissue scaffolds by robotic assembly1, in bioengineering such as single-cell manipulation and biosensing2, and in healthcare3,4,5,6 such as targeted drug delivery4 and minimally invasive surgery3,5. Existing small-scale robots, however, have very limited mobility because they are unable to negotiate obstacles and changes in texture or material in unstructured environments7,8,9,10,11,12,13. Of these small-scale robots, soft robots have greater potential to realize high mobility via multimodal locomotion, because such machines have higher degrees of freedom than their rigid counterparts14,15,16. Here we demonstrate magneto-elastic soft millimetre-scale robots that can swim inside and on the surface of liquids, climb liquid menisci, roll and walk on solid surfaces, jump over obstacles, and crawl within narrow tunnels. These robots can transit reversibly between different liquid and solid terrains, as well as switch between locomotive modes. They can additionally execute pick-and-place and cargo-release tasks. We also present theoretical models to explain how the robots move. Like the large-scale robots that can be used to study locomotion17, these soft small-scale robots could be used to study soft-bodied locomotion produced by small organisms.

pi

link (url) DOI Project Page [BibTex]


Light‐Driven Janus Hollow Mesoporous TiO2–Au Microswimmers
Light‐Driven Janus Hollow Mesoporous TiO2–Au Microswimmers

Sridhar, V., Park, B., Sitti, M.

Advanced Functional Materials, 28(5):1704902, January 2018 (article)

Abstract
Abstract Light‐driven microswimmers have garnered attention for their potential use in various applications, such as environmental remediation, hydrogen evolution, and targeted drug delivery. Janus hollow mesoporous TiO2/Au (JHP–TiO2–Au) microswimmers with enhanced swimming speeds under low‐intensity ultraviolet (UV) light are presented. The swimmers show enhanced swimming speeds both in presence and absence of H2O2. The microswimmers move due to self‐electrophoresis when UV light is incident on them. There is a threefold increase in speed of JHP–TiO2–Au microswimmers in comparison with Janus solid TiO2/Au (JS–TiO2–Au) microswimmers. This increase in their speed is due to the increase in surface area of the porous swimmers and their hollow structure. These microswimmers are also made steerable by using a thin Co magnetic layer. They can be used in potential environmental applications for active photocatalytic degradation of methylene blue and targeted active drug delivery of an anticancer drug (doxurobicin) in vitro in H2O2 solution. Their increased speed from the presence of a hollow mesoporous structure is beneficial for future potential applications, such as hydrogen evolution, selective heterogeneous photocatalysis, and targeted cargo delivery.

pi

link (url) DOI Project Page [BibTex]


Mechanical Rubbing of Blood Clots Using Helical Robots Under Ultrasound Guidance
Mechanical Rubbing of Blood Clots Using Helical Robots Under Ultrasound Guidance

Khalil, I. S. M., Mahdy, D., Sharkawy, A. E., Moustafa, R. R., Tabak, A. F., Mitwally, M. E., Hesham, S., Hamdi, N., Klingner, A., Mohamed, A., Sitti, M.

IEEE Robotics and Automation Letters, 3(2):1112-1119, January 2018 (article)

Abstract
A simple way to mitigate the potential negative sideeffects associated with chemical lysis of a blood clot is to tear its fibrin network via mechanical rubbing using a helical robot. Here, we achieve mechanical rubbing of blood clots under ultrasound guidance and using external magnetic actuation. Position of the helical robot is determined using ultrasound feedback and used to control its motion toward the clot, whereas the volume of the clots is estimated simultaneously using visual feedback. We characterize the shear modulus and ultimate shear strength of the blood clots to predict their removal rate during rubbing. Our in vitro experiments show the ability to move the helical robot controllably toward clots using ultrasound feedback with average and maximum errors of 0.84 ± 0.41 and 2.15 mm, respectively, and achieve removal rate of -0.614 ± 0.303 mm3/min at room temperature (25 °C) and -0.482 ± 0.23 mm3/min at body temperature (37 °C), under the influence of two rotating dipole fields at frequency of 35 Hz. We also validate the effectiveness of mechanical rubbing by measuring the number of red blood cells and platelets past the clot. Our measurements show that rubbing achieves cell count of (46 ± 10.9) × 104 cell/ml, whereas the count in the absence of rubbing is (2 ± 1.41) × 104 cell/ml, after 40 min.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Enhanced Non-Steady Gliding Performance of the MultiMo-Bat through Optimal Airfoil Configuration and Control Strategy

Kim, H., Woodward, M. A., Sitti, M.

In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 1382-1388, 2018 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Analysis of Magnetic Interaction in Remotely Controlled Magnetic Devices and Its Application to a Capsule Robot for Drug Delivery

Munoz, F., Alici, G., Zhou, H., Li, W., M. Sitti,

IEEE Transactions on Magnetics, 23(1):298-310, 2018 (article)

pi

[BibTex]

[BibTex]


no image
Anisotropic Gold Nanostructures: Optimization via in Silico Modeling for Hyperthermia

Singh, A., Jahnke, T., Wang, S., Xiao, Y., Alapan, Y., Kharratian, S., Onbasli, M. C., Kozielski, K., David, H., Richter, G., Bill, J., Laux, P., Luch, A., Sitti, M.

ACS Applied Nano Materials, 1(11):6205-6216, 2018 (article)

pi

[BibTex]

[BibTex]


no image
Collectives of Spinning Mobile Microrobots for Navigation and Object Manipulation at the Air-Water Interface

Wang, W., Kishore, V., Koens, L., Lauga, E., Sitti, M.

In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 1-9, 2018 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Incorporation of Terbium into a Microalga Leads to Magnetotactic Swimmers

Santomauro, G., Singh, A., Park, B. W., Mohammadrahimi, M., Erkoc, P., Goering, E., Schütz, G., Sitti, M., Bill, J.

Advanced Biosystems, 2(12):1800039, 2018 (article)

mms pi

[BibTex]

[BibTex]