Header logo is


2020


Learning of sub-optimal gait controllers for magnetic walking soft millirobots
Learning of sub-optimal gait controllers for magnetic walking soft millirobots

Culha, U., Demir, S. O., Trimpe, S., Sitti, M.

In Proceedings of Robotics: Science and Systems, July 2020, Culha and Demir are equally contributing authors (inproceedings)

Abstract
Untethered small-scale soft robots have promising applications in minimally invasive surgery, targeted drug delivery, and bioengineering applications as they can access confined spaces in the human body. However, due to highly nonlinear soft continuum deformation kinematics, inherent stochastic variability during fabrication at the small scale, and lack of accurate models, the conventional control methods cannot be easily applied. Adaptivity of robot control is additionally crucial for medical operations, as operation environments show large variability, and robot materials may degrade or change over time,which would have deteriorating effects on the robot motion and task performance. Therefore, we propose using a probabilistic learning approach for millimeter-scale magnetic walking soft robots using Bayesian optimization (BO) and Gaussian processes (GPs). Our approach provides a data-efficient learning scheme to find controller parameters while optimizing the stride length performance of the walking soft millirobot robot within a small number of physical experiments. We demonstrate adaptation to fabrication variabilities in three different robots and to walking surfaces with different roughness. We also show an improvement in the learning performance by transferring the learning results of one robot to the others as prior information.

pi

link (url) DOI [BibTex]

2020


link (url) DOI [BibTex]


Actively Learning Gaussian Process Dynamics
Actively Learning Gaussian Process Dynamics

Buisson-Fenet, M., Solowjow, F., Trimpe, S.

2nd Annual Conference on Learning for Dynamics and Control, June 2020 (conference) Accepted

Abstract
Despite the availability of ever more data enabled through modern sensor and computer technology, it still remains an open problem to learn dynamical systems in a sample-efficient way. We propose active learning strategies that leverage information-theoretical properties arising naturally during Gaussian process regression, while respecting constraints on the sampling process imposed by the system dynamics. Sample points are selected in regions with high uncertainty, leading to exploratory behavior and data-efficient training of the model. All results are verified in an extensive numerical benchmark.

ics

ArXiv [BibTex]

ArXiv [BibTex]


SIMULTANEOUS CALIBRATION METHOD FOR MAGNETIC LOCALIZATION AND ACTUATION SYSTEMS
SIMULTANEOUS CALIBRATION METHOD FOR MAGNETIC LOCALIZATION AND ACTUATION SYSTEMS

Sitti, M., Son, D., Dong, X.

June 2020, US Patent App. 16/696,605 (misc)

Abstract
The invention relates to a method of simultaneously calibrating magnetic actuation and sensing systems for a workspace, wherein the actuation system comprises a plurality of magnetic actuators and the sensing system comprises a plurality of magnetic sensors, wherein all the measured data is fed into a calibration model, wherein the calibration model is based on a sensor measurement model and a magnetic actuation model, and wherein a solution of the model parameters is found via a numerical solver order to calibrate both the actuation and sensing systems at the same time.

pi

[BibTex]


Learning Constrained Dynamics with Gauss Principle adhering Gaussian Processes
Learning Constrained Dynamics with Gauss Principle adhering Gaussian Processes

Geist, A. R., Trimpe, S.

In 2nd Annual Conference on Learning for Dynamics and Control, June 2020 (inproceedings) Accepted

Abstract
The identification of the constrained dynamics of mechanical systems is often challenging. Learning methods promise to ease an analytical analysis, but require considerable amounts of data for training. We propose to combine insights from analytical mechanics with Gaussian process regression to improve the model's data efficiency and constraint integrity. The result is a Gaussian process model that incorporates a priori constraint knowledge such that its predictions adhere to Gauss' principle of least constraint. In return, predictions of the system's acceleration naturally respect potentially non-ideal (non-)holonomic equality constraints. As corollary results, our model enables to infer the acceleration of the unconstrained system from data of the constrained system and enables knowledge transfer between differing constraint configurations.

ics

Arxiv preprint [BibTex]

Arxiv preprint [BibTex]


no image
Where Does It End? - Reasoning About Hidden Surfaces by Object Intersection Constraints

Strecke, M., Stückler, J.

In Proceedings IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE/CVF International Conference on Computer Vision and Pattern Recognition (CVPR) 2020, June 2020 (inproceedings)

ev

preprint project page [BibTex]

preprint project page [BibTex]


Bayesian Optimization in Robot Learning - Automatic Controller Tuning and Sample-Efficient Methods
Bayesian Optimization in Robot Learning - Automatic Controller Tuning and Sample-Efficient Methods

Marco-Valle, A.

University of Tübingen, June 2020 (thesis)

Abstract
The problem of designing controllers to regulate dynamical systems has been studied by engineers during the past millennia. Ever since, suboptimal performance lingers in many closed loops as an unavoidable side effect of manually tuning the parameters of the controllers. Nowadays, industrial settings remain skeptic about data-driven methods that allow one to automatically learn controller parameters. In the context of robotics, machine learning (ML) keeps growing its influence on increasing autonomy and adaptability, for example to aid automating controller tuning. However, data-hungry ML methods, such as standard reinforcement learning, require a large number of experimental samples, prohibitive in robotics, as hardware can deteriorate and break. This brings about the following question: Can manual controller tuning, in robotics, be automated by using data-efficient machine learning techniques? In this thesis, we tackle the question above by exploring Bayesian optimization (BO), a data-efficient ML framework, to buffer the human effort and side effects of manual controller tuning, while retaining a low number of experimental samples. We focus this work in the context of robotic systems, providing thorough theoretical results that aim to increase data-efficiency, as well as demonstrations in real robots. Specifically, we present four main contributions. We first consider using BO to replace manual tuning in robotic platforms. To this end, we parametrize the design weights of a linear quadratic regulator (LQR) and learn its parameters using an information-efficient BO algorithm. Such algorithm uses Gaussian processes (GPs) to model the unknown performance objective. The GP model is used by BO to suggest controller parameters that are expected to increment the information about the optimal parameters, measured as a gain in entropy. The resulting “automatic LQR tuning” framework is demonstrated on two robotic platforms: A robot arm balancing an inverted pole and a humanoid robot performing a squatting task. In both cases, an existing controller is automatically improved in a handful of experiments without human intervention. BO compensates for data scarcity by means of the GP, which is a probabilistic model that encodes prior assumptions about the unknown performance objective. Usually, incorrect or non-informed assumptions have negative consequences, such as higher number of robot experiments, poor tuning performance or reduced sample-efficiency. The second to fourth contributions presented herein attempt to alleviate this issue. The second contribution proposes to include the robot simulator into the learning loop as an additional information source for automatic controller tuning. While doing a real robot experiment generally entails high associated costs (e.g., require preparation and take time), simulations are cheaper to obtain (e.g., they can be computed faster). However, because the simulator is an imperfect model of the robot, its information is biased and could have negative repercussions in the learning performance. To address this problem, we propose “simu-vs-real”, a principled multi-fidelity BO algorithm that trades off cheap, but inaccurate information from simulations with expensive and accurate physical experiments in a cost-effective manner. The resulting algorithm is demonstrated on a cart-pole system, where simulations and real experiments are alternated, thus sparing many real evaluations. The third contribution explores how to adequate the expressiveness of the probabilistic prior to the control problem at hand. To this end, the mathematical structure of LQR controllers is leveraged and embedded into the GP, by means of the kernel function. Specifically, we propose two different “LQR kernel” designs that retain the flexibility of Bayesian nonparametric learning. Simulated results indicate that the LQR kernel yields superior performance than non-informed kernel choices when used for controller learning with BO. Finally, the fourth contribution specifically addresses the problem of handling controller failures, which are typically unavoidable in practice while learning from data, specially if non-conservative solutions are expected. Although controller failures are generally problematic (e.g., the robot has to be emergency-stopped), they are also a rich information source about what should be avoided. We propose “failures-aware excursion search”, a novel algorithm for Bayesian optimization under black-box constraints, where failures are limited in number. Our results in numerical benchmarks indicate that by allowing a confined number of failures, better optima are revealed as compared with state-of-the-art methods. The first contribution of this thesis, “automatic LQR tuning”, lies among the first on applying BO to real robots. While it demonstrated automatic controller learning from few experimental samples, it also revealed several important challenges, such as the need of higher sample-efficiency, which opened relevant research directions that we addressed through several methodological contributions. Summarizing, we proposed “simu-vs-real”, a novel BO algorithm that includes the simulator as an additional information source, an “LQR kernel” design that learns faster than standard choices and “failures-aware excursion search”, a new BO algorithm for constrained black-box optimization problems, where the number of failures is limited.

ics

Repository (Universitätsbibliothek) - University of Tübingen PDF DOI [BibTex]


Towards 5-DoF Control of an Untethered Magnetic Millirobot via MRI Gradient Coils
Towards 5-DoF Control of an Untethered Magnetic Millirobot via MRI Gradient Coils

Onder Erin, D. A. M. E. T., Sitti, M.

In IEEE International Conference on Robotics and Automation (ICRA), 2020 (inproceedings)

pi

[BibTex]

[BibTex]


Microfibers with mushroom-shaped tips for optimal adhesion
Microfibers with mushroom-shaped tips for optimal adhesion

Sitti, M., Aksak, B.

Google Patents, 2020, US Patent 10,689,549 (misc)

pi

[BibTex]

[BibTex]


no image
Planning from Images with Deep Latent Gaussian Process Dynamics

Bosch, N., Achterhold, J., Leal-Taixe, L., Stückler, J.

Proceedings of the 2nd Conference on Learning for Dynamics and Control (L4DC), 120, pages: 640-650, Proceedings of Machine Learning Research (PMLR), (Editors: Alexandre M. Bayen and Ali Jadbabaie and George Pappas and Pablo A. Parrilo and Benjamin Recht and Claire Tomlin and Melanie Zeilinger), 2020, arXiv:2005.03770 (conference)

ev

preprint project page poster [BibTex]

preprint project page poster [BibTex]


no image
DirectShape: Photometric Alignment of Shape Priors for Visual Vehicle Pose and Shape Estimation

Wang, R., Yang, N., Stückler, J., Cremers, D.

In Accepted for IEEE international Conference on Robotics and Automation (ICRA), 2020, arXiv:1904.10097 (inproceedings) Accepted

ev

[BibTex]

[BibTex]

2016


no image
Predictive and Self Triggering for Event-based State Estimation

Trimpe, S.

In Proceedings of the 55th IEEE Conference on Decision and Control (CDC), pages: 3098-3105, Las Vegas, NV, USA, December 2016 (inproceedings)

am ics

arXiv PDF DOI Project Page [BibTex]

2016


arXiv PDF DOI Project Page [BibTex]


Steering control of a water-running robot using an active tail
Steering control of a water-running robot using an active tail

Kim, H., Jeong, K., Sitti, M., Seo, T.

In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on, pages: 4945-4950, October 2016 (inproceedings)

Abstract
Many highly dynamic novel mobile robots have been developed being inspired by animals. In this study, we are inspired by a basilisk lizard's ability to run and steer on water surface for a hexapedal robot. The robot has an active tail with a circular plate, which the robot rotates to steer on water. We dynamically modeled the platform and conducted simulations and experiments on steering locomotion with a bang-bang controller. The robot can steer on water by rotating the tail, and the controlled steering locomotion is stable. The dynamic modelling approximates the robot's steering locomotion and the trends of the simulations and experiments are similar, although there are errors between the desired and actual angles. The robot's maneuverability on water can be improved through further research.

pi

DOI [BibTex]

DOI [BibTex]


Targeting of cell mockups using sperm-shaped microrobots in vitro
Targeting of cell mockups using sperm-shaped microrobots in vitro

Khalil, I. S., Tabak, A. F., Hosney, A., Klingner, A., Shalaby, M., Abdel-Kader, R. M., Serry, M., Sitti, M.

In Biomedical Robotics and Biomechatronics (BioRob), 2016 6th IEEE International Conference on, pages: 495-501, July 2016 (inproceedings)

Abstract
Sperm-shaped microrobots are controlled under the influence of weak oscillating magnetic fields (milliTesla range) to selectively target cell mockups (i.e., gas bubbles with average diameter of 200 μm). The sperm-shaped microrobots are fabricated by electrospinning using a solution of polystyrene, dimethylformamide, and iron oxide nanoparticles. These nanoparticles are concentrated within the head of the microrobot, and hence enable directional control along external magnetic fields. The magnetic dipole moment of the microrobot is characterized (using the flip-time technique) to be 1.4×10-11 A.m2, at magnetic field of 28 mT. In addition, the morphology of the microrobot is characterized using Scanning Electron Microscopy images. The characterized parameters and morphology are used in the simulation of the locomotion mechanism of the microrobot to prove that its motion depends on breaking the time-reversal symmetry, rather than pulling with the magnetic field gradient. We experimentally demonstrate that the microrobot can controllably follow S-shaped, U-shaped, and square paths, and selectively target the cell mockups using image guidance and under the influence of the oscillating magnetic fields.

pi

DOI [BibTex]

DOI [BibTex]


Analysis of the magnetic torque on a tilted permanent magnet for drug delivery in capsule robots
Analysis of the magnetic torque on a tilted permanent magnet for drug delivery in capsule robots

Munoz, F., Alici, G., Zhou, H., Li, W., Sitti, M.

In Advanced Intelligent Mechatronics (AIM), 2016 IEEE International Conference on, pages: 1386-1391, July 2016 (inproceedings)

Abstract
In this paper, we present the analysis of the torque transmitted to a tilted permanent magnet that is to be embedded in a capsule robot to achieve targeted drug delivery. This analysis is carried out by using an analytical model and experimental results for a small cubic permanent magnet that is driven by an external magnetic system made of an array of arc-shaped permanent magnets (ASMs). Our experimental results, which are in agreement with the analytical results, show that the cubic permanent magnet can safely be actuated for inclinations lower than 75° without having to make positional adjustments in the external magnetic system. We have found that with further inclinations, the cubic permanent magnet to be embedded in a drug delivery mechanism may stall. When it stalls, the external magnetic system's position and orientation would have to be adjusted to actuate the cubic permanent magnet and the drug release mechanism. This analysis of the transmitted torque is helpful for the development of real-time control strategies for magnetically articulated devices.

pi

DOI [BibTex]

DOI [BibTex]


Robust Gaussian Filtering using a Pseudo Measurement
Robust Gaussian Filtering using a Pseudo Measurement

Wüthrich, M., Garcia Cifuentes, C., Trimpe, S., Meier, F., Bohg, J., Issac, J., Schaal, S.

In Proceedings of the American Control Conference (ACC), Boston, MA, USA, July 2016 (inproceedings)

Abstract
Most widely-used state estimation algorithms, such as the Extended Kalman Filter and the Unscented Kalman Filter, belong to the family of Gaussian Filters (GF). Unfortunately, GFs fail if the measurement process is modelled by a fat-tailed distribution. This is a severe limitation, because thin-tailed measurement models, such as the analytically-convenient and therefore widely-used Gaussian distribution, are sensitive to outliers. In this paper, we show that mapping the measurements into a specific feature space enables any existing GF algorithm to work with fat-tailed measurement models. We find a feature function which is optimal under certain conditions. Simulation results show that the proposed method allows for robust filtering in both linear and nonlinear systems with measurements contaminated by fat-tailed noise.

am ics

Web link (url) DOI Project Page [BibTex]

Web link (url) DOI Project Page [BibTex]


Automatic LQR Tuning Based on Gaussian Process Global Optimization
Automatic LQR Tuning Based on Gaussian Process Global Optimization

Marco, A., Hennig, P., Bohg, J., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 270-277, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
This paper proposes an automatic controller tuning framework based on linear optimal control combined with Bayesian optimization. With this framework, an initial set of controller gains is automatically improved according to a pre-defined performance objective evaluated from experimental data. The underlying Bayesian optimization algorithm is Entropy Search, which represents the latent objective as a Gaussian process and constructs an explicit belief over the location of the objective minimum. This is used to maximize the information gain from each experimental evaluation. Thus, this framework shall yield improved controllers with fewer evaluations compared to alternative approaches. A seven-degree- of-freedom robot arm balancing an inverted pole is used as the experimental demonstrator. Results of a two- and four- dimensional tuning problems highlight the method’s potential for automatic controller tuning on robotic platforms.

am ics pn

Video - Automatic LQR Tuning Based on Gaussian Process Global Optimization - ICRA 2016 Video - Automatic Controller Tuning on a Two-legged Robot PDF DOI Project Page [BibTex]

Video - Automatic LQR Tuning Based on Gaussian Process Global Optimization - ICRA 2016 Video - Automatic Controller Tuning on a Two-legged Robot PDF DOI Project Page [BibTex]


Depth-based Object Tracking Using a Robust Gaussian Filter
Depth-based Object Tracking Using a Robust Gaussian Filter

Issac, J., Wüthrich, M., Garcia Cifuentes, C., Bohg, J., Trimpe, S., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2016, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
We consider the problem of model-based 3D- tracking of objects given dense depth images as input. Two difficulties preclude the application of a standard Gaussian filter to this problem. First of all, depth sensors are characterized by fat-tailed measurement noise. To address this issue, we show how a recently published robustification method for Gaussian filters can be applied to the problem at hand. Thereby, we avoid using heuristic outlier detection methods that simply reject measurements if they do not match the model. Secondly, the computational cost of the standard Gaussian filter is prohibitive due to the high-dimensional measurement, i.e. the depth image. To address this problem, we propose an approximation to reduce the computational complexity of the filter. In quantitative experiments on real data we show how our method clearly outperforms the standard Gaussian filter. Furthermore, we compare its performance to a particle-filter-based tracking method, and observe comparable computational efficiency and improved accuracy and smoothness of the estimates.

am ics

Video Bayesian Object Tracking Library Bayesian Filtering Framework Object Tracking Dataset link (url) DOI Project Page [BibTex]

Video Bayesian Object Tracking Library Bayesian Filtering Framework Object Tracking Dataset link (url) DOI Project Page [BibTex]


Sperm-shaped magnetic microrobots: Fabrication using electrospinning, modeling, and characterization
Sperm-shaped magnetic microrobots: Fabrication using electrospinning, modeling, and characterization

Khalil, I. S., Tabak, A. F., Hosney, A., Mohamed, A., Klingner, A., Ghoneima, M., Sitti, M.

In Robotics and Automation (ICRA), 2016 IEEE International Conference on, pages: 1939-1944, May 2016 (inproceedings)

Abstract
We use electrospinning to fabricate sperm-shaped magnetic microrobots with a range of diameters from 50 μm to 500 μm. The variables of the electrospinning operation (voltage, concentration of the solution, dynamic viscosity, and distance between the syringe needle and collector) to achieve beading effect are determined. This beading effect allows us to fabricate microrobots with similar morphology to that of sperm cells. The bead and the ultra-fine fiber resemble the morphology of the head and tail of the sperm cell, respectively. We incorporate iron oxide nanoparticles to the head of the sperm-shaped microrobot to provide a magnetic dipole moment. This dipole enables directional control under the influence of external magnetic fields. We also apply weak (less than 2 mT) oscillating magnetic fields to exert a magnetic torque on the magnetic head, and generate planar flagellar waves and flagellated swim. The average speed of the sperm-shaped microrobot is calculated to be 0.5 body lengths per second and 1 body lengths per second at frequencies of 5 Hz and 10 Hz, respectively. We also develop a model of the microrobot using elastohydrodynamics approach and Timoshenko-Rayleigh beam theory, and find good agreement with the experimental results.

pi

DOI [BibTex]

DOI [BibTex]


no image
Communication Rate Analysis for Event-based State Estimation

(Best student paper finalist)

Ebner, S., Trimpe, S.

In Proceedings of the 13th International Workshop on Discrete Event Systems, May 2016 (inproceedings)

am ics

PDF DOI [BibTex]

PDF DOI [BibTex]

2015


Automatic LQR Tuning Based on Gaussian Process Optimization: Early Experimental Results
Automatic LQR Tuning Based on Gaussian Process Optimization: Early Experimental Results

Marco, A., Hennig, P., Bohg, J., Schaal, S., Trimpe, S.

Machine Learning in Planning and Control of Robot Motion Workshop at the IEEE/RSJ International Conference on Intelligent Robots and Systems (iROS), pages: , , Machine Learning in Planning and Control of Robot Motion Workshop, October 2015 (conference)

Abstract
This paper proposes an automatic controller tuning framework based on linear optimal control combined with Bayesian optimization. With this framework, an initial set of controller gains is automatically improved according to a pre-defined performance objective evaluated from experimental data. The underlying Bayesian optimization algorithm is Entropy Search, which represents the latent objective as a Gaussian process and constructs an explicit belief over the location of the objective minimum. This is used to maximize the information gain from each experimental evaluation. Thus, this framework shall yield improved controllers with fewer evaluations compared to alternative approaches. A seven-degree-of-freedom robot arm balancing an inverted pole is used as the experimental demonstrator. Preliminary results of a low-dimensional tuning problem highlight the method’s potential for automatic controller tuning on robotic platforms.

am ei ics pn

PDF DOI Project Page [BibTex]

2015


PDF DOI Project Page [BibTex]


Gaussian Process Optimization for Self-Tuning Control
Gaussian Process Optimization for Self-Tuning Control

Marco, A.

Polytechnic University of Catalonia (BarcelonaTech), October 2015 (mastersthesis)

am ics

PDF Project Page [BibTex]

PDF Project Page [BibTex]


Compliant wing design for a flapping wing micro air vehicle
Compliant wing design for a flapping wing micro air vehicle

Colmenares, D., Kania, R., Zhang, W., Sitti, M.

In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on, pages: 32-39, September 2015 (inproceedings)

Abstract
In this work, we examine several wing designs for a motor-driven, flapping-wing micro air vehicle capable of liftoff. The full system consists of two wings independently driven by geared pager motors that include a spring in parallel with the output shaft. The linear transmission allows for resonant operation, while control is achieved by direct drive of the wing angle. Wings used in previous work were chosen to be fully rigid for simplicity of modeling and fabrication. However, biological wings are highly flexible and other micro air vehicles have successfully utilized flexible wing structures for specialized tasks. The goal of our study is to determine if wing flexibility can be generally used to increase wing performance. Two approaches to lift improvement using flexible wings are explored, resonance of the wing cantilever structure and dynamic wing twisting. We design and test several wings that are compared using different figures of merit. A twisted design improved lift per power by 73.6% and maximum lift production by 53.2% compared to the original rigid design. Wing twist is then modeled in order to propose optimal wing twist profiles that can maximize either wing efficiency or lift production.

pi

DOI [BibTex]

DOI [BibTex]


no image
Millimeter-scale magnetic swimmers using elastomeric undulations

Zhang, J., Diller, E.

In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 1706-1711, September 2015 (inproceedings)

Abstract
This paper presents a new soft-bodied millimeterscale swimmer actuated by rotating uniform magnetic fields. The proposed swimmer moves through internal undulatory deformations, resulting from a magnetization profile programmed into its body. To understand the motion of the swimmer, a mathematical model is developed to describe the general relationship between the deflection of a flexible strip and its magnetization profile. As a special case, the situation of the swimmer on the water surface is analyzed and predictions made by the model are experimentally verified. Experimental results show the controllability of the proposed swimmer under a computer vision-based closed-loop controller. The swimmers have nominal dimensions of 1.5×4.9×0.06 mm and a top speed of 50 mm/s (10 body lengths per second). Waypoint following and multiagent control are demonstrated for swimmers constrained at the air-water interface and underwater swimming is also shown, suggesting the promising potential of this type of swimmer in biomedical and microfluidic applications.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Adaptive and Learning Concepts in Hydraulic Force Control

Doerr, A.

University of Stuttgart, September 2015 (mastersthesis)

am ics

[BibTex]

[BibTex]


Direct Loss Minimization Inverse Optimal Control
Direct Loss Minimization Inverse Optimal Control

Doerr, A., Ratliff, N., Bohg, J., Toussaint, M., Schaal, S.

In Proceedings of Robotics: Science and Systems, Rome, Italy, Robotics: Science and Systems XI, July 2015 (inproceedings)

Abstract
Inverse Optimal Control (IOC) has strongly impacted the systems engineering process, enabling automated planner tuning through straightforward and intuitive demonstration. The most successful and established applications, though, have been in lower dimensional problems such as navigation planning where exact optimal planning or control is feasible. In higher dimensional systems, such as humanoid robots, research has made substantial progress toward generalizing the ideas to model free or locally optimal settings, but these systems are complicated to the point where demonstration itself can be difficult. Typically, real-world applications are restricted to at best noisy or even partial or incomplete demonstrations that prove cumbersome in existing frameworks. This work derives a very flexible method of IOC based on a form of Structured Prediction known as Direct Loss Minimization. The resulting algorithm is essentially Policy Search on a reward function that rewards similarity to demonstrated behavior (using Covariance Matrix Adaptation (CMA) in our experiments). Our framework blurs the distinction between IOC, other forms of Imitation Learning, and Reinforcement Learning, enabling us to derive simple, versatile, and practical algorithms that blend imitation and reinforcement signals into a unified framework. Our experiments analyze various aspects of its performance and demonstrate its efficacy on conveying preferences for motion shaping and combined reach and grasp quality optimization.

am ics

PDF Video Project Page [BibTex]

PDF Video Project Page [BibTex]


no image
LMI-Based Synthesis for Distributed Event-Based State Estimation

Muehlebach, M., Trimpe, S.

In Proceedings of the American Control Conference, July 2015 (inproceedings)

Abstract
This paper presents an LMI-based synthesis procedure for distributed event-based state estimation. Multiple agents observe and control a dynamic process by sporadically exchanging data over a broadcast network according to an event-based protocol. In previous work [1], the synthesis of event-based state estimators is based on a centralized design. In that case three different types of communication are required: event-based communication of measurements, periodic reset of all estimates to their joint average, and communication of inputs. The proposed synthesis problem eliminates the communication of inputs as well as the periodic resets (under favorable circumstances) by accounting explicitly for the distributed structure of the control system.

am ics

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
Guaranteed H2 Performance in Distributed Event-Based State Estimation

Muehlebach, M., Trimpe, S.

In Proceeding of the First International Conference on Event-based Control, Communication, and Signal Processing, June 2015 (inproceedings)

am ics

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
On the Choice of the Event Trigger in Event-based Estimation

Trimpe, S., Campi, M.

In Proceeding of the First International Conference on Event-based Control, Communication, and Signal Processing, June 2015 (inproceedings)

am ics

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


Fiberbot: A miniature crawling robot using a directional fibrillar pad
Fiberbot: A miniature crawling robot using a directional fibrillar pad

Han, Y., Marvi, H., Sitti, M.

In Robotics and Automation (ICRA), 2015 IEEE International Conference on, pages: 3122-3127, May 2015 (inproceedings)

Abstract
Vibration-driven locomotion has been widely used for crawling robot studies. Such robots usually have a vibration motor as the actuator and a fibrillar structure for providing directional friction on the substrate. However, there has not been any studies about the effect of fiber structure on robot crawling performance. In this paper, we develop Fiberbot, a custom made mini vibration robot, for studying the effect of fiber angle on robot velocity, steering, and climbing performance. It is known that the friction force with and against fibers depends on the fiber angle. Thus, we first present a new fabrication method for making millimeter scale fibers at a wide range of angles. We then show that using 30° angle fibers that have the highest friction anisotropy (ratio of backward to forward friction force) among the other fibers we fabricated in this study, Fiberbot speed on glass increases to 13.8±0.4 cm/s (compared to ν = 0.6±0.1 cm/s using vertical fibers). We also demonstrate that the locomotion direction of Fiberbot depends on the tilting direction of fibers and we can steer the robot by rotating the fiber pad. Fiberbot could also climb on glass at inclinations of up to 10° when equipped with fibers of high friction anisotropy. We show that adding a rigid tail to the robot it can climb on glass at 25° inclines. Moreover, the robot is able to crawl on rough surfaces such as wood (ν = 10.0±0.2 cm/s using 30° fiber pad). Fiberbot, a low-cost vibration robot equipped with a custom-designed fiber pad with steering and climbing capabilities could be used for studies on collective behavior on a wide range of topographies as well as search and exploratory missions.

pi

DOI [BibTex]

DOI [BibTex]


Platform design and tethered flight of a motor-driven flapping-wing system
Platform design and tethered flight of a motor-driven flapping-wing system

Hines, L., Colmenares, D., Sitti, M.

In Robotics and Automation (ICRA), 2015 IEEE International Conference on, pages: 5838-5845, May 2015 (inproceedings)

Abstract
In this work, we examine two design modifications to a tethered motor-driven flapping-wing system. Previously, we had demonstrated a simple mechanism utilizing a linear transmission for resonant operation and direct drive of the wing flapping angle for control. The initial two-wing system had a weight of 2.7 grams and a maximum lift-to-weight ratio of 1.4. While capable of vertical takeoff, in open-loop flight it demonstrated instability and pitch oscillations at the wing flapping frequency, leading to flight times of only a few wing strokes. Here the effect of vertical wing offset as well as an alternative multi-wing layout is investigated and experimentally tested with newly constructed prototypes. With only a change in vertical wing offset, stable open-loop flight of the two-wing flapping system is shown to be theoretically possible, but difficult to achieve with our current design and operating parameters. Both of the new two and four-wing systems, however, prove capable of flying to the end of the tether, with the four-wing system prototype eliminating disruptive wing beat oscillations.

pi

DOI [BibTex]

DOI [BibTex]


no image
Event-based Estimation and Control for Remote Robot Operation with Reduced Communication

Trimpe, S., Buchli, J.

In Proceedings of the IEEE International Conference on Robotics and Automation, May 2015 (inproceedings)

Abstract
An event-based communication framework for remote operation of a robot via a bandwidth-limited network is proposed. The robot sends state and environment estimation data to the operator, and the operator transmits updated control commands or policies to the robot. Event-based communication protocols are designed to ensure that data is transmitted only when required: the robot sends new estimation data only if this yields a significant information gain at the operator, and the operator transmits an updated control policy only if this comes with a significant improvement in control performance. The developed framework is modular and can be used with any standard estimation and control algorithms. Simulation results of a robotic arm highlight its potential for an efficient use of limited communication resources, for example, in disaster response scenarios such as the DARPA Robotics Challenge.

am ics

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
Policy Search for Imitation Learning

Doerr, A.

University of Stuttgart, January 2015 (thesis)

am ics

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
A New Perspective and Extension of the Gaussian Filter

Wüthrich, M., Trimpe, S., Kappler, D., Schaal, S.

In Robotics: Science and Systems, 2015 (inproceedings)

Abstract
The Gaussian Filter (GF) is one of the most widely used filtering algorithms; instances are the Extended Kalman Filter, the Unscented Kalman Filter and the Divided Difference Filter. GFs represent the belief of the current state by a Gaussian with the mean being an affine function of the measurement. We show that this representation can be too restrictive to accurately capture the dependencies in systems with nonlinear observation models, and we investigate how the GF can be generalized to alleviate this problem. To this end we view the GF from a variational-inference perspective, and analyze how restrictions on the form of the belief can be relaxed while maintaining simplicity and efficiency. This analysis provides a basis for generalizations of the GF. We propose one such generalization which coincides with a GF using a virtual measurement, obtained by applying a nonlinear function to the actual measurement. Numerical experiments show that the proposed Feature Gaussian Filter (FGF) can have a substantial performance advantage over the standard GF for systems with nonlinear observation models.

am ics

Web PDF Project Page [BibTex]

2005


no image
Adhesive microstructure and method of forming same

Fearing, R. S., Sitti, M.

March 2005, US Patent 6,872,439 (misc)

pi

[BibTex]

2005


[BibTex]


no image
Modeling and testing of a biomimetic flagellar propulsion method for microscale biomedical swimming robots

Behkam, B., Sitti, M.

In Proceedings of Advanced Intelligent Mechatronics Conference, pages: 37-42, 2005 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Biologically inspired adhesion based surface climbing robots

Menon, C., Sitti, M.

In Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on, pages: 2715-2720, 2005 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Claytronics: highly scalable communications, sensing, and actuation networks

Aksak, Burak, Bhat, Preethi Srinivas, Campbell, Jason, DeRosa, Michael, Funiak, Stanislav, Gibbons, Phillip B, Goldstein, Seth Copen, Guestrin, Carlos, Gupta, Ashish, Helfrich, Casey, others

In Proceedings of the 3rd international conference on Embedded networked sensor systems, pages: 299-299, 2005 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Biologically Inspired Miniature Water Strider Robot.

Suhr, S. H., Song, Y. S., Lee, S. J., Sitti, M.

In Robotics: Science and Systems, pages: 319-326, 2005 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Polymer micro/nanofiber fabrication using micro/nanopipettes

Nain, A. S., Amon, C., Sitti, M.

In Nanotechnology, 2005. 5th IEEE Conference on, pages: 366-369, 2005 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Fusion of biomedical microcapsule endoscope and microsystem technology

Kim, Tae Song, Kim, Byungkyu, Cho, Dongil Dan, Song, Si Young, Dario, P, Sitti, M

In Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS’05. The 13th International Conference on, 1, pages: 9-14, 2005 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Atomic force microscope based two-dimensional assembly of micro/nanoparticles

Tafazzoli, A., Pawashe, C., Sitti, M.

In Assembly and Task Planning: From Nano to Macro Assembly and Manufacturing, 2005.(ISATP 2005). The 6th IEEE International Symposium on, pages: 230-235, 2005 (inproceedings)

pi

[BibTex]

[BibTex]


no image
A new endoscopic microcapsule robot using beetle inspired microfibrillar adhesives

Cheung, E., Karagozler, M. E., Park, S., Kim, B., Sitti, M.

In Advanced Intelligent Mechatronics. Proceedings, 2005 IEEE/ASME International Conference on, pages: 551-557, 2005 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]