Header logo is


2015


Enzymatically active biomimetic micropropellers for the penetration of mucin gels
Enzymatically active biomimetic micropropellers for the penetration of mucin gels

Walker (Schamel), D., Käsdorf, B. T., Jeong, H. H., Lieleg, O., Fischer, P.

Science Advances, 1(11):e1500501, December 2015 (article)

Abstract
In the body, mucus provides an important defense mechanism by limiting the penetration of pathogens. It is therefore also a major obstacle for the efficient delivery of particle-based drug carriers. The acidic stomach lining in particular is difficult to overcome because mucin glycoproteins form viscoelastic gels under acidic conditions. The bacterium Helicobacter pylori has developed a strategy to overcome the mucus barrier by producing the enzyme urease, which locally raises the pH and consequently liquefies the mucus. This allows the bacteria to swim through mucus and to reach the epithelial surface. We present an artificial system of reactive magnetic micropropellers that mimic this strategy to move through gastric mucin gels by making use of surface-immobilized urease. The results demonstrate the validity of this biomimetic approach to penetrate biological gels, and show that externally propelled microstructures can actively and reversibly manipulate the physical state of their surroundings, suggesting that such particles could potentially penetrate native mucus.

pf

link (url) DOI [BibTex]

2015


link (url) DOI [BibTex]


The EChemPen: A Guiding Hand To Learn Electrochemical Surface Modifications
The EChemPen: A Guiding Hand To Learn Electrochemical Surface Modifications

Valetaud, M., Loget, G., Roche, J., Hueken, N., Fattah, Z., Badets, V., Fontaine, O., Zigah, D.

J. of Chem. Ed., 92(10):1700-1704, September 2015 (article)

Abstract
The Electrochemical Pen (EChemPen) was developed as an attractive tool for learning electrochemistry. The fabrication, principle, and operation of the EChemPen are simple and can be easily performed by students in practical classes. It is based on a regular fountain pen principle, where the electrolytic solution is dispensed at a tip to locally modify a conductive surface by triggering a localized electrochemical reaction. Three simple model reactions were chosen to demonstrate the versatility of the EChemPen for teaching various electrochemical processes. We describe first the reversible writing/erasing of metal letters, then the electrodeposition of a black conducting polymer "ink", and finally the colorful writings that can be generated by titanium anodization and that can be controlled by the applied potential. These entertaining and didactic experiments are adapted for teaching undergraduate students that start to study electrochemistry by means of surface modification reactions.

pf

DOI [BibTex]

DOI [BibTex]


Experimental investigation of optimal adhesion of mushroomlike elastomer microfibrillar adhesives
Experimental investigation of optimal adhesion of mushroomlike elastomer microfibrillar adhesives

Marvi, H., Song, S., Sitti, M.

Langmuir, 31(37):10119-10124, American Chemical Society, August 2015 (article)

Abstract
Optimal fiber designs for the maximal pull-off force have been indispensable for increasing the attachment performance of recently introduced gecko-inspired reversible micro/nanofibrillar adhesives. There are several theoretical studies on such optimal designs; however, due to the lack of three-dimensional (3D) fabrication techniques that can fabricate such optimal designs in 3D, there have not been many experimental investigations on this challenge. In this study, we benefitted from recent advances in two-photon lithography techniques to fabricate mushroomlike polyurethane elastomer fibers with different aspect ratios of tip to stalk diameter (β) and tip wedge angles (θ) to investigate the effect of these two parameters on the pull-off force. We found similar trends to those predicted theoretically. We found that β has an impact on the slope of the force-displacement curve while both β and θ play a role in the stress distribution and crack propagation. We found that these effects are coupled and the optimal set of parameters also depends on the fiber material. This is the first experimental verification of such optimal designs proposed for mushroomlike microfibers. This experimental approach could be used to evaluate a wide range of complex microstructured adhesive designs suggested in the literature and optimize them.

pi

DOI [BibTex]

DOI [BibTex]


pH-taxis of biohybrid microsystems
pH-taxis of biohybrid microsystems

Zhuang, J., Carlsen, R. W., Sitti, M.

Scientific reports, 5, Nature Publishing Group, June 2015 (article)

Abstract
The last decade has seen an increasing number of studies developing bacteria and other cell-integrated biohybrid microsystems. However, the highly stochastic motion of these microsystems severely limits their potential use. Here, we present a method that exploits the pH sensing of flagellated bacteria to realize robust drift control of multi-bacteria propelled microrobots. Under three specifically configured pH gradients, we demonstrate that the microrobots exhibit both unidirectional and bidirectional pH-tactic behaviors, which are also observed in free-swimming bacteria. From trajectory analysis, we find that the swimming direction and speed biases are two major factors that contribute to their tactic drift motion. The motion analysis of microrobots also sheds light on the propulsion dynamics of the flagellated bacteria as bioactuators. It is expected that similar driving mechanisms are shared among pH-taxis, chemotaxis, and thermotaxis. By identifying the mechanism that drives the tactic behavior of bacteria-propelled microsystems, this study opens up an avenue towards improving the control of biohybrid microsystems. Furthermore, assuming that it is possible to tune the preferred pH of bioactuators by genetic engineering, these biohybrid microsystems could potentially be applied to sense the pH gradient induced by cancerous cells in stagnant fluids inside human body and realize targeted drug delivery.

pi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Optimal Length of Low Reynolds Number Nanopropellers
Optimal Length of Low Reynolds Number Nanopropellers

Walker (Schamel), D., Kuebler, M., Morozov, K. I., Fischer, P., Leshansky, A. M.

Nano Letters, 15(7):4412-4416, June 2015 (article)

Abstract
Locomotion in fluids at the nanoscale is dominated by viscous drag. One efficient propulsion scheme is to use a weak rotating magnetic field that drives a chiral object. Froth bacterial flagella to artificial drills, the corkscrew is a universally useful chiral shape for propulsion in viscous environments. Externally powered magnetic micro- and nanomotors have been recently developed that allow for precise fuel-free propulsion in complex media. Here, we combine analytical and numerical theory with experiments on nanostructured screw-propellers to show that the optimal length is surprisingly short only about one helical turn, which is shorter than most of the structures in use to date. The results have important implications for the design of artificial actuated nano- and micropropellers and can dramatically reduce fabrication times, while ensuring optimal performance.

pf

DOI [BibTex]

DOI [BibTex]


Structural optimization for flexure-based parallel mechanisms--Towards achieving optimal dynamic and stiffness properties
Structural optimization for flexure-based parallel mechanisms–Towards achieving optimal dynamic and stiffness properties

Lum, G. Z., Teo, T. J., Yeo, S. H., Yang, G., Sitti, M.

Precision Engineering, 42, pages: 195-207, Elsevier, May 2015 (article)

Abstract
Flexure-based parallel mechanisms (FPMs) are a type of compliant mechanisms that consist of a rigid end-effector that is articulated by several parallel, flexible limbs (a.k.a. sub-chains). Existing design methods can enhance the FPMs’ dynamic and stiffness properties by conducting a size optimization on their sub-chains. A similar optimization process, however, was not performed for their sub-chains’ topology, and this may severely limit the benefits of a size optimization. Thus, this paper proposes to use a structural optimization approach to synthesize and optimize the topology, shape and size of the FPMs’ sub-chains. The benefits of this approach are demonstrated via the design and development of a planar X − Y − θz FPM. A prototype of this FPM was evaluated experimentally to have a large workspace of 1.2 mm × 1.2 mm × 6°, a fundamental natural frequency of 102 Hz, and stiffness ratios that are greater than 120. The achieved properties show significant improvement over existing 3-degrees-of-freedom compliant mechanisms that can deflect more than 0.5 mm and 0.5°. These compliant mechanisms typically have stiffness ratios that are less than 60 and a fundamental natural frequency that is less than 45 Hz.

pi

DOI [BibTex]

DOI [BibTex]


A theoretical study of potentially observable chirality-sensitive NMR effects in molecules
A theoretical study of potentially observable chirality-sensitive NMR effects in molecules

Garbacz, P., Cukras, J., Jaszunski, M.

Phys. Chem. Chem. Phys., 17(35):22642-22651, May 2015 (article)

Abstract
Two recently predicted nuclear magnetic resonance effects, the chirality-induced rotating electric polarization and the oscillating magnetization, are examined for several experimentally available chiral molecules. We discuss in detail the requirements for experimental detection of chirality-sensitive NMR effects of the studied molecules. These requirements are related to two parameters: the shielding polarizability and the antisymmetric part of the nuclear magnetic shielding tensor. The dominant second contribution has been computed for small molecules at the coupled cluster and density functional theory levels. It was found that DFT calculations using the KT2 functional and the aug-cc-pCVTZ basis set adequately reproduce the CCSD(T) values obtained with the same basis set. The largest values of parameters, thus most promising from the experimental point of view, were obtained for the fluorine nuclei in 1,3-difluorocyclopropene and 1,3-diphenyl-2-fluoro-3-trifluoromethylcyclopropene.

pf

DOI [BibTex]

DOI [BibTex]


Dynamic Inclusion Complexes of Metal Nanoparticles Inside Nanocups
Dynamic Inclusion Complexes of Metal Nanoparticles Inside Nanocups

Alarcon-Correa, M., Lee, T. C., Fischer, P.

Angew. Chem. Int. Ed., 54(23):6730-6734, May 2015, Featured cover article. (article)

Abstract
Host-guest inclusion complexes are abundant in molecular systems and of fundamental importance in living organisms. Realizing a colloidal analogue of a molecular dynamic inclusion complex is challenging because inorganic nanoparticles (NPs) with a well-defined cavity and portal are difficult to synthesize in high yield and with good structural fidelity. Herein, a generic strategy towards the fabrication of dynamic 1: 1 inclusion complexes of metal nanoparticles inside oxide nanocups with high yield (> 70%) and regiospecificity (> 90%) by means of a reactive double Janus nanoparticle intermediate is reported. Experimental evidence confirms that the inclusion complexes are formed by a kinetically controlled mechanism involving a delicate interplay between bipolar galvanic corrosion and alloying-dealloying oxidation. Release of the NP guest from the nanocups can be efficiently triggered by an external stimulus. Featured cover article.

pf

DOI [BibTex]

DOI [BibTex]


Controlled surface topography regulates collective 3D migration by epithelial--mesenchymal composite embryonic tissues
Controlled surface topography regulates collective 3D migration by epithelial–mesenchymal composite embryonic tissues

Song, J., Shawky, J. H., Kim, Y., Hazar, M., LeDuc, P. R., Sitti, M., Davidson, L. A.

Biomaterials, 58, pages: 1-9, Elsevier, April 2015 (article)

Abstract
Cells in tissues encounter a range of physical cues as they migrate. Probing single cell and collective migratory responses to physically defined three-dimensional (3D) microenvironments and the factors that modulate those responses are critical to understanding how tissue migration is regulated during development, regeneration, and cancer. One key physical factor that regulates cell migration is topography. Most studies on surface topography and cell mechanics have been carried out with single migratory cells, yet little is known about the spreading and motility response of 3D complex multi-cellular tissues to topographical cues. Here, we examine the response to complex topographical cues of microsurgically isolated tissue explants composed of epithelial and mesenchymal cell layers from naturally 3D organized embryos of the aquatic frog Xenopus laevis. We control topography using fabricated micropost arrays (MPAs) and investigate the collective 3D migration of these multi-cellular systems in these MPAs. We find that the topography regulates both collective and individual cell migration and that dense MPAs reduce but do not eliminate tissue spreading. By modulating cell size through the cell cycle inhibitor Mitomycin C or the spacing of the MPAs we uncover how 3D topographical cues disrupt collective cell migration. We find surface topography can direct both single cell motility and tissue spreading, altering tissue-scale processes that enable efficient conversion of single cell motility into collective movement.

pi

DOI [BibTex]

DOI [BibTex]


Transfer Printing of Metallic Microstructures on Adhesion-Promoting Hydrogel Substrates
Transfer Printing of Metallic Microstructures on Adhesion-Promoting Hydrogel Substrates

Wu, H., Sariola, V., Zhu, C., Zhao, J., Sitti, M., Bettinger, C. J.

Advanced Materials, 27(22):3398-3404, April 2015 (article)

Abstract
Fabrication schemes that integrate inorganic microstructures with hydrogel substrates are essential for advancing flexible electronics. A transfer printing process that is made possible through the design and synthesis of adhesion-promoting hydrogels as target substrates is reported. This fabrication technique may advance ultracompliant electronics by melding microfabricated structures with swollen hydrogel substrates.

pi

DOI [BibTex]

DOI [BibTex]


Surface roughness-induced speed increase for active Janus micromotors
Surface roughness-induced speed increase for active Janus micromotors

Choudhury, U., Soler, L., Gibbs, J. G., Sanchez, S., Fischer, P.

Chem. Comm., 51(41):8660-8663, April 2015 (article)

Abstract
We demonstrate a simple physical fabrication method to control surface roughness of Janus micromotors and fabricate self-propelled active Janus microparticles with rough catalytic platinum surfaces that show a four-fold increase in their propulsion speed compared to conventional Janus particles coated with a smooth Pt layer.

pf

DOI [BibTex]

DOI [BibTex]


Biomedical applications of untethered mobile milli/microrobots
Biomedical applications of untethered mobile milli/microrobots

Sitti, M., Ceylan, H., Hu, W., Giltinan, J., Turan, M., Yim, S., Diller, E.

Proceedings of the IEEE, 103(2):205-224, IEEE, March 2015 (article)

Abstract
Untethered robots miniaturized to the length scale of millimeter and below attract growing attention for the prospect of transforming many aspects of health care and bioengineering. As the robot size goes down to the order of a single cell, previously inaccessible body sites would become available for high-resolution in situ and in vivo manipulations. This unprecedented direct access would enable an extensive range of minimally invasive medical operations. Here, we provide a comprehensive review of the current advances in biomedical untethered mobile milli/microrobots. We put a special emphasis on the potential impacts of biomedical microrobots in the near future. Finally, we discuss the existing challenges and emerging concepts associated with designing such a miniaturized robot for operation inside a biological environment for biomedical applications.

pi

DOI [BibTex]

DOI [BibTex]


Active colloidal microdrills
Active colloidal microdrills

Gibbs, J. G., Fischer, P.

Chem. Comm., 51(20):4192-4195, Febuary 2015 (article)

Abstract
We demonstrate a chemically driven, autonomous catalytic microdrill. An asymmetric distribution of catalyst causes the helical swimmer to twist while it undergoes directed propulsion. A driving torque and hydrodynamic coupling between translation and rotation at low Reynolds number leads to drill-like swimming behaviour.

pf

DOI [BibTex]

DOI [BibTex]


Collective 3D Migration of Embryonic Epithelial Mesenchymal Composite Tissues are Regulated by Surface Topology
Collective 3D Migration of Embryonic Epithelial Mesenchymal Composite Tissues are Regulated by Surface Topology

Song, J., Shawky, J., Kim, Y. T., Hazar, M., Sitti, M., LeDuc, P. R., Davidson, L. A.

Biophysical Journal, 108(2):455a, Elsevier, January 2015 (article)

Abstract
Cells in tissues encounter a range of physical cues as they migrate. Probing single cell and collective migratory responses to physically defined three-dimensional (3D) microenvironments and the factors that modulate those responses are critical to understanding how tissue migration is regulated during development, regeneration, and cancer. One key physical factor that regulates cell migration is topology. Most studies on surface topology and cell mechanics have been carried out with single migratory cells, yet little is known about the spreading and motility response of 3D complex multicellular tissues to topological cues. Here, we examine the behaviors of microsurgically isolated tissue explants composed of epithelial and mesenchymal cell layers from naturally 3D organized embryos of the aquatic frog Xenopus laevis to complex topological cues. We control topology using fabricated micropost arrays (MPAs) with different diameters (e.g., different spacing gaps) and investigate the collective 3D migration of these multicellular systems in these MPAs. Our topographical controlled approach for cellular application enables us to achieve a high degree of control over micropost positioning and geometry via simple, accurate, and repeatable microfabrication processes. We find that the topology regulates both collective and individual cell migration and that dense MPAs reduce but do not eliminate tissue spreading. By modulating cell size through the cell cycle inhibitor Mitomycin C or the spacing within MPAs we discover a role for topology in disrupting collective enhancement of cell migration. We find 3D topological cues can direct both single cell motility and tissue spreading, altering tissue-scale processes that enable efficient conversion of single cell motility into collective movement.

pi

DOI [BibTex]

DOI [BibTex]


Three-dimensional heterogeneous assembly of coded microgels using an untethered mobile microgripper
Three-dimensional heterogeneous assembly of coded microgels using an untethered mobile microgripper

Chung, S. E., Dong, X., Sitti, M.

Lab on a Chip, 15(7):1667-1676, Royal Society of Chemistry, January 2015 (article)

Abstract
Three-dimensional (3D) heterogeneous assembly of coded microgels in enclosed aquatic environments is demonstrated using a remotely actuated and controlled magnetic microgripper by a customized electromagnetic coil system. The microgripper uses different ‘stick–slip’ and ‘rolling’ locomotion in 2D and also levitation in 3D by magnetic gradient-based pulling force. This enables the microrobot to precisely manipulate each microgel by controlling its position and orientation in all x–y–z directions. Our microrobotic assembly method broke the barrier of limitation on the number of assembled microgel layers, because it enabled precise 3D levitation of the microgripper. We used the gripper to assemble microgels that had been coded with different colours and shapes onto prefabricated polymeric microposts. This eliminates the need for extra secondary cross-linking to fix the final construct. We demonstrated assembly of microgels on a single micropost up to ten layers. By increasing the number and changing the distribution of the posts, complex heterogeneous microsystems were possible to construct in 3D.

pi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Integrating mechanism synthesis and topological optimization technique for stiffness-oriented design of a three degrees-of-freedom flexure-based parallel mechanism
Integrating mechanism synthesis and topological optimization technique for stiffness-oriented design of a three degrees-of-freedom flexure-based parallel mechanism

Lum, G. Z., Teo, T. J., Yang, G., Yeo, S. H., Sitti, M.

Precision Engineering, 39, pages: 125-133, Elsevier, January 2015 (article)

Abstract
This paper introduces a new design approach to synthesize multiple degrees-of-freedom (DOF) flexure-based parallel mechanism (FPM). Termed as an integrated design approach, it is a systematic design methodology, which integrates both classical mechanism synthesis and modern topology optimization technique, to deliver an optimized multi-DOF FPM. This design approach is separated into two levels. At sub-chain level, a novel topology optimization technique, which uses the classical linkage mechanisms as DNA seeds, is used to synthesize the compliant joints or limbs. At configuration level, the optimal compliant joints are used to form the parallel limbs of the multi-DOF FPM and another stage of optimization was conducted to determine the optimal space distribution between these compliant joints so as to generate a multi-DOF FPM with optimized stiffness characteristic. In this paper, the design of a 3-DOF planar motion FPM was used to demonstrate the effectiveness and accuracy of this proposed design approach.

pi

DOI [BibTex]


Actively controlled fibrillar friction surfaces
Actively controlled fibrillar friction surfaces

Marvi, H, Han, Y, Sitti, M

Applied Physics Letters, 106(5):051602, AIP Publishing, January 2015 (article)

Abstract
In this letter, we propose a technique by which we can actively adjust frictional properties of elastic fibrillar structures in different directions. Using a mesh attached to a two degree-of-freedom linear stage, we controlled the active length and the tilt angle of fibers, independently. Thus, we were able to achieve desired levels of friction forces in different directions and significantly improve passive friction anisotropies observed in the same fiber arrays. The proposed technique would allow us to readily control the friction anisotropy and the friction magnitude of fibrillar structures in any planar direction.

pi

DOI [BibTex]

DOI [BibTex]


Selectable Nanopattern Arrays for Nanolithographic Imprint and Etch-Mask Applications
Selectable Nanopattern Arrays for Nanolithographic Imprint and Etch-Mask Applications

Jeong, H. H., Mark, A. G., Lee, T., Son, K., Chen, W., Alarcon-Correa, M., Kim, I., Schütz, G., Fischer, P.

Adv. Science, 2(7):1500016, 2015, Featured cover article. (article)

Abstract
A parallel nanolithographic patterning method is presented that can be used to obtain arrays of multifunctional nanoparticles. These patterns can simply be converted into a variety of secondary nanopatterns that are useful for nanolithographic imprint, plasmonic, and etch-mask applications.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2012


no image
Methods, apparatuses, and systems for micromanipulation with adhesive fibrillar structures

Sitti, M., Mengüç, Y.

December 2012, US Patent App. 14/368,079 (misc)

pi

[BibTex]

2012



no image
Dry adhesive structures

Sitti, M., Murphy, M., Aksak, B.

December 2012, US Patent App. 13/533,386 (misc)

pi

[BibTex]

[BibTex]


no image
Methods of making dry adhesives

Sitti, M., Murphy, M., Aksak, B.

June 2012, US Patent 8,206,631 (misc)

pi

[BibTex]

[BibTex]


no image
Dry adhesives and methods for making dry adhesives

Sitti, M., Murphy, M., Aksak, B.

March 2012, US Patent App. 13/429,621 (misc)

pi

[BibTex]

[BibTex]


Fourier-transform photocurrent spectroscopy using a supercontinuum light source
Fourier-transform photocurrent spectroscopy using a supercontinuum light source

Petermann, C., Beigang, R., Fischer, P.

APPLIED PHYSICS LETTERS, 100(6), 2012 (article)

Abstract
We demonstrate an implementation of frequency-encoded photocurrent spectroscopy using a super-continuum light source. The spectrally broad light is spatially dispersed and modulated with a special mechanical chopper design that permits a continuous wavelength-dependent modulation. After recombination, the light beam contains a frequency encoded spectrum which enables us to map the spectral response of a given sample in 60 ms and with a lateral resolution of 10 mu m. (C) 2012 American Institute of Physics.

pf

DOI [BibTex]

DOI [BibTex]


no image
Tail-assisted pitch control in lizards, robots and dinosaurs

Libby, T., Moore, T., Chang, E., Li, D., Cohen, D., Jusufi, A., Full, R.

Nature, 2012 (article)

bio

link (url) [BibTex]

link (url) [BibTex]


Eine neue Form von Cavity Enhanced Absorption Spectroscopy
Eine neue Form von Cavity Enhanced Absorption Spectroscopy

Petermann, C., Fischer, P.

DE Gruyter, 79(1), 2012, Best paper award OPTO 2011 (article)

Abstract
Wir stellen eine Kopplungsmethode für resonatorgestützte Absorptionsmessungen vor, bei der Licht durch einen im Resonator platzierten akustooptischen Modulator aktiv ein- und ausgekoppelt wird. Dies ermöglicht es Cavity-Ring-Down-Spektroskopie (CRDS) mit breitbandigen und zeitlich inkohärenten Lichtquellen niedriger spektraler Leistungsdichte durchzuführen. Das Verfahren wird zum ersten Mal mit einer breitbandigen Superkontinuum-Quelle demonstriert.

___________________________________________________________________________________________

A new coupling scheme for cavity enhanced absorption spectroscopy makes use of an intracavity acousto-optical modulator to actively switch light into (and out of) a resonator. This allows cavity ringdown spectroscopy (CRDS) to be implemented with broadband temporally incoherent light sources with low spectral power densities. The method is demonstrated for the first time using a broadband supercontinuum source. Best paper award OPTO 2011.

pf

link (url) [BibTex]

link (url) [BibTex]


no image
Rapid Inversion: Running Animals and Robots Swing like a Pendulum under Ledges

Mongeau, J., McRae, B., Jusufi, A., Birkmeyer, P., Hoover, A., Fearing, R.

PLoS One, 2012 (article)

bio

link (url) [BibTex]

link (url) [BibTex]


no image
Two-dimensional autonomous microparticle manipulation strategies for magnetic microrobots in fluidic environments

Pawashe, C., Floyd, S., Diller, E., Sitti, M.

IEEE Transactions on Robotics, 28(2):467-477, IEEE, 2012 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Three-dimensional microfiber devices that mimic physiological environments to probe cell mechanics and signaling

Ruder, W. C., Pratt, E. D., Bakhru, S., Sitti, M., Zappe, S., Cheng, C., Antaki, J. F., LeDuc, P. R.

Lab on a Chip, 12(10):1775-1779, Royal Society of Chemistry, 2012 (article)

pi

[BibTex]

[BibTex]


no image
Active visual search in unknown environments using uncertain semantics

Aydemir, Alper, Pronobis, Andrzej, Jensfelt, Patric, Sj, Kristoffer, Aydemir, Alper, Jensfelt, Patric, Aydemir, A, Jensfelt, P, Aydemir, A, Jensfelt, P, others

Transactions, 1, pages: 2329-2335, IEEE, 2012 (article)

pi

[BibTex]

[BibTex]


no image
Modelling of conductive atomic force microscope probes for scanning tunnelling microscope operation

Ozcan, O, Sitti, M

IET Micro \& Nano Letters, 7(4):329-333, IET, 2012 (article)

pi

[BibTex]

[BibTex]


no image
Shape memory polymer-based flexure stiffness control in a miniature flapping-wing robot

Hines, L., Arabagi, V., Sitti, M.

IEEE Transactions on Robotics, 28(4):987-990, IEEE, 2012 (article)

pi

[BibTex]

[BibTex]


no image
Micro-manipulation using rotational fluid flows induced by remote magnetic micro-manipulators

Ye, Z., Diller, E., Sitti, M.

Journal of Applied Physics, 112(6):064912, AIP, 2012 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Remotely addressable magnetic composite micropumps

Diller, E., Miyashita, S., Sitti, M.

Rsc Advances, 2(9):3850-3856, Royal Society of Chemistry, 2012 (article)

pi

[BibTex]

[BibTex]


no image
Shape-Programmable Soft Capsule Robots for Semi-Implantable Drug Delivery

Yim, S., Sitti, M.

Mechatronics, IEEE/ASME Transactions on, 2012 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Control of multiple heterogeneous magnetic microrobots in two dimensions on nonspecialized surfaces

Diller, E., Floyd, S., Pawashe, C., Sitti, M.

IEEE Transactions on Robotics, 28(1):172-182, IEEE, 2012 (article)

pi

[BibTex]

[BibTex]


no image
Gecko-Inspired Controllable Adhesive Structures Applied to Micromanipulation

Mengüç, Y., Yang, S. Y., Kim, S., Rogers, J. A., Sitti, M.

Advanced Functional Materials, 22(6):1245-1245, WILEY-VCH Verlag, 2012 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Elastomer surfaces with directionally dependent adhesion strength and their use in transfer printing with continuous roll-to-roll applications

Yang, S. Y., Carlson, A., Cheng, H., Yu, Q., Ahmed, N., Wu, J., Kim, S., Sitti, M., Ferreira, P. M., Huang, Y., others,

Advanced Materials, 24(16):2117-2122, WILEY-VCH Verlag, 2012 (article)

pi

[BibTex]

[BibTex]


no image
Effect of retraction speed on adhesion of elastomer fibrillar structures

Abusomwan, U., Sitti, M.

Applied Physics Letters, 101(21):211907, AIP, 2012 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Impact and Surface Tension in Water: a Study of Landing Bodies

Shih, B., Laham, L., Lee, K. J., Krasnoff, N., Diller, E., Sitti, M.

Bio-inspired Robotics Final Project, Carnegie Mellon University, 2012 (article)

pi

[BibTex]

[BibTex]


no image
Design and rolling locomotion of a magnetically actuated soft capsule endoscope

Yim, S., Sitti, M.

IEEE Transactions on Robotics, 28(1):183-194, IEEE, 2012 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Design and manufacturing of a controllable miniature flapping wing robotic platform

Arabagi, V., Hines, L., Sitti, M.

The International Journal of Robotics Research, 31(6):785-800, SAGE Publications Sage UK: London, England, 2012 (article)

pi

[BibTex]

[BibTex]


no image
Chemotactic steering of bacteria propelled microbeads

Kim, D., Liu, A., Diller, E., Sitti, M.

Biomedical microdevices, 14(6):1009-1017, Springer US, 2012 (article)

pi

Project Page [BibTex]

Project Page [BibTex]

2005


no image
Adhesive microstructure and method of forming same

Fearing, R. S., Sitti, M.

March 2005, US Patent 6,872,439 (misc)

pi

[BibTex]

2005


[BibTex]


Nonlinear optical spectroscopy of chiral molecules
Nonlinear optical spectroscopy of chiral molecules

Fischer, P., Hache, F.

CHIRALITY, 17(8):421-437, 2005 (article)

Abstract
We review nonlinear optical processes that are specific to chiral molecules in solution and on surfaces. In contrast to conventional natural optical activity phenomena, which depend linearly on the electric field strength of the optical field, we discuss how optical processes that are nonlinear (quadratic, cubic, and quartic) functions of the electromagnetic field strength may probe optically active centers and chiral vibrations. We show that nonlinear techniques open entirely new ways of exploring chirality in chemical and biological systems: The cubic processes give rise to nonlinear circular dichroism and nonlinear optical rotation and make it possible to observe dynamic chiral processes at ultrafast time scales. The quadratic second-harmonic and sum-frequency-generation phenomena and the quartic processes may arise entirely in the electric-dipole approximation and do not require the use of circularly polarized light to detect chirality: They provide surface selectivity and their observables can be relatively much larger than in linear optical activity. These processes also give rise to the generation of light at a new color, and in liquids this frequency conversion only occurs if the solution is optically active. We survey recent chiral nonlinear optical experiments and give examples of their application to problems of biophysical interest. (C) 2005 Wiley-Liss, Inc.

pf

DOI [BibTex]

DOI [BibTex]


Negative refraction at optical frequencies in nonmagnetic two-component molecular media
Negative refraction at optical frequencies in nonmagnetic two-component molecular media

Chen, Y., Fischer, P., Wise, F.

PHYSICAL REVIEW LETTERS, 95(6), 2005 (article)

Abstract
There is significant motivation to develop media with negative refractive indices at optical frequencies, but efforts in this direction are hampered by the weakness of the magnetic response at such frequencies. We show theoretically that a nonmagnetic medium with two atomic or molecular constituents can exhibit a negative refractive index. A negative index is possible even when the real parts of both the permittivity and permeability are positive. This surprising result provides a route to isotropic negative-index media at optical frequencies.

pf

DOI [BibTex]

DOI [BibTex]


no image
In vivo diabetic wound healing with nanofibrous scaffolds modified with gentamicin and recombinant human epidermal growth factor

Dwivedi, C., Pandey, I., Pandey, H., Patil, S., Mishra, S. B., Pandey, A. C., Zamboni, P., Ramteke, P. W., Singh, A. V.

Journal of Biomedical Materials Research Part A, 106(3):641-651, March (article)

Abstract
Abstract Diabetic wounds are susceptible to microbial infection. The treatment of these wounds requires a higher payload of growth factors. With this in mind, the strategy for this study was to utilize a novel payload comprising of Eudragit RL/RS 100 nanofibers carrying the bacterial inhibitor gentamicin sulfate (GS) in concert with recombinant human epidermal growth factor (rhEGF); an accelerator of wound healing. GS containing Eudragit was electrospun to yield nanofiber scaffolds, which were further modified by covalent immobilization of rhEGF to their surface. This novel fabricated nanoscaffold was characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, and X‐ray diffraction. The thermal behavior of the nanoscaffold was determined using thermogravimetric analysis and differential scanning calorimetry. In the in vitro antibacterial assays, the nanoscaffolds exhibited comparable antibacterial activity to pure gentemicin powder. In vivo work using female C57/BL6 mice, the nanoscaffolds induced faster wound healing activity in dorsal wounds compared to the control. The paradigm in this study presents a robust in vivo model to enhance the applicability of drug delivery systems in wound healing applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 641–651, 2018.

pi

link (url) DOI [BibTex]


link (url) DOI [BibTex]