Header logo is


2017


no image
Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation for Deep Reinforcement Learning

Gu, S., Lillicrap, T., Turner, R. E., Ghahramani, Z., Schölkopf, B., Levine, S.

Advances in Neural Information Processing Systems 30, pages: 3849-3858, (Editors: Guyon I. and Luxburg U.v. and Bengio S. and Wallach H. and Fergus R. and Vishwanathan S. and Garnett R.), Curran Associates, Inc., 31st Annual Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) Project Page [BibTex]

2017


link (url) Project Page [BibTex]


no image
Boosting Variational Inference: an Optimization Perspective

Locatello, F., Khanna, R., Ghosh, J., Rätsch, G.

Workshop: Advances in Approximate Bayesian Inference at the 31st Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Learning Independent Causal Mechanisms

Parascandolo, G., Rojas-Carulla, M., Kilbertus, N., Schölkopf, B.

Workshop: Learning Disentangled Representations: from Perception to Control at the 31st Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Avoiding Discrimination through Causal Reasoning

Kilbertus, N., Rojas-Carulla, M., Parascandolo, G., Hardt, M., Janzing, D., Schölkopf, B.

Advances in Neural Information Processing Systems 30, pages: 656-666, (Editors: Guyon I. and Luxburg U.v. and Bengio S. and Wallach H. and Fergus R. and Vishwanathan S. and Garnett R.), Curran Associates, Inc., 31st Annual Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Greedy Algorithms for Cone Constrained Optimization with Convergence Guarantees

Locatello, F., Tschannen, M., Rätsch, G., Jaggi, M.

Advances in Neural Information Processing Systems 30, pages: 773-784, (Editors: Guyon I. and Luxburg U.v. and Bengio S. and Wallach H. and Fergus R. and Vishwanathan S. and Garnett R.), Curran Associates, Inc., 31st Annual Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
AdaGAN: Boosting Generative Models

Tolstikhin, I., Gelly, S., Bousquet, O., Simon-Gabriel, C. J., Schölkopf, B.

Advances in Neural Information Processing Systems 30, pages: 5424-5433, (Editors: Guyon I. and Luxburg U.v. and Bengio S. and Wallach H. and Fergus R. and Vishwanathan S. and Garnett R.), Curran Associates, Inc., 31st Annual Conference on Neural Information Processing Systems, December 2017 (conference)

ei

arXiv link (url) Project Page [BibTex]

arXiv link (url) Project Page [BibTex]


Thumb xl larsnips
The Numerics of GANs

Mescheder, L., Nowozin, S., Geiger, A.

In Proceedings from the conference "Neural Information Processing Systems 2017., (Editors: Guyon I. and Luxburg U.v. and Bengio S. and Wallach H. and Fergus R. and Vishwanathan S. and Garnett R.), Curran Associates, Inc., Advances in Neural Information Processing Systems 30 (NIPS), December 2017 (inproceedings)

Abstract
In this paper, we analyze the numerics of common algorithms for training Generative Adversarial Networks (GANs). Using the formalism of smooth two-player games we analyze the associated gradient vector field of GAN training objectives. Our findings suggest that the convergence of current algorithms suffers due to two factors: i) presence of eigenvalues of the Jacobian of the gradient vector field with zero real-part, and ii) eigenvalues with big imaginary part. Using these findings, we design a new algorithm that overcomes some of these limitations and has better convergence properties. Experimentally, we demonstrate its superiority on training common GAN architectures and show convergence on GAN architectures that are known to be notoriously hard to train.

avg

pdf Project Page [BibTex]

pdf Project Page [BibTex]


no image
Safe Adaptive Importance Sampling

Stich, S. U., Raj, A., Jaggi, M.

Advances in Neural Information Processing Systems 30, pages: 4384-4394, (Editors: Guyon I. and Luxburg U.v. and Bengio S. and Wallach H. and Fergus R. and Vishwanathan S. and Garnett R.), Curran Associates, Inc., 31st Annual Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
ConvWave: Searching for Gravitational Waves with Fully Convolutional Neural Nets

Gebhard, T., Kilbertus, N., Parascandolo, G., Harry, I., Schölkopf, B.

Workshop on Deep Learning for Physical Sciences (DLPS) at the 31st Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
From Parity to Preference-based Notions of Fairness in Classification

Zafar, M. B., Valera, I., Gomez Rodriguez, M., Gummadi, K., Weller, A.

Advances in Neural Information Processing Systems 30, pages: 229-239, (Editors: Guyon I. and Luxburg U.v. and Bengio S. and Wallach H. and Fergus R. and Vishwanathan S. and Garnett R.), Curran Associates, Inc., 31st Annual Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Thumb xl hines et al 2016 advanced materials
Soft Actuators for Small-Scale Robotics

Hines, L., Petersen, K., Lum, G. Z., Sitti, M.

Advanced Materials, 2017 (article)

Abstract
This review comprises a detailed survey of ongoing methodologies for soft actuators, highlighting approaches suitable for nanometer- to centimeter-scale robotic applications. Soft robots present a special design challenge in that their actuation and sensing mechanisms are often highly integrated with the robot body and overall functionality. When less than a centimeter, they belong to an even more special subcategory of robots or devices, in that they often lack on-board power, sensing, computation, and control. Soft, active materials are particularly well suited for this task, with a wide range of stimulants and a number of impressive examples, demonstrating large deformations, high motion complexities, and varied multifunctionality. Recent research includes both the development of new materials and composites, as well as novel implementations leveraging the unique properties of soft materials.

pi

DOI [BibTex]


Thumb xl 41315 2017 39 fig3 html
A deep learning based fusion of RGB camera information and magnetic localization information for endoscopic capsule robots

Turan, M., Shabbir, J., Araujo, H., Konukoglu, E., Sitti, M.

International Journal of Intelligent Robotics and Applications, 1(4):442-450, December 2017 (article)

Abstract
A reliable, real time localization functionality is crutial for actively controlled capsule endoscopy robots, which are an emerging, minimally invasive diagnostic and therapeutic technology for the gastrointestinal (GI) tract. In this study, we extend the success of deep learning approaches from various research fields to the problem of sensor fusion for endoscopic capsule robots. We propose a multi-sensor fusion based localization approach which combines endoscopic camera information and magnetic sensor based localization information. The results performed on real pig stomach dataset show that our method achieves sub-millimeter precision for both translational and rotational movements.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Discriminative k-shot learning using probabilistic models

Bauer*, M., Rojas-Carulla*, M., Świątkowski, J. B., Schölkopf, B., Turner, R. E.

Second Workshop on Bayesian Deep Learning at the 31st Conference on Neural Information Processing Systems , December 2017, *equal contribution (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Closed-form Inference and Prediction in Gaussian Process State-Space Models

Ialongo, A. D., Van Der Wilk, M., Rasmussen, C. E.

Time Series Workshop at the 31st Conference on Neural Information Processing Systems, December 2017 (conference)

ei

PDF [BibTex]

PDF [BibTex]


no image
Learning Robust Video Synchronization without Annotations

Wieschollek, P., Freeman, I., Lensch, H. P. A.

16th IEEE International Conference on Machine Learning and Applications (ICMLA), pages: 92 - 100, (Editors: X. Chen, B. Luo, F. Luo, V. Palade, and M. A. Wani), IEEE, December 2017 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Optimizing human learning

Tabibian, B., Upadhyay, U., De, A., Zarezade, A., Schölkopf, B., Gomez Rodriguez, M.

Workshop on Teaching Machines, Robots, and Humans at the 31st Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Leveraging the Crowd to Detect and Reduce the Spread of Fake News and Misinformation

Kim, J., Tabibian, B., Oh, A., Schölkopf, B., Gomez Rodriguez, M.

Workshop on Prioritising Online Content at the 31st Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


Thumb xl 3d mikroroboterb
3D Chemical Patterning of Micromaterials for Encoded Functionality

Ceylan, H., Yasa, I. C., Sitti, M.

Advanced Materials, 2017 (article)

Abstract
Programming local chemical properties of microscale soft materials with 3D complex shapes is indispensable for creating sophisticated functionalities, which has not yet been possible with existing methods. Precise spatiotemporal control of two-photon crosslinking is employed as an enabling tool for 3D patterning of microprinted structures for encoding versatile chemical moieties.

pi

DOI Project Page [BibTex]


Thumb xl f2.large
Biohybrid actuators for robotics: A review of devices actuated by living cells

Ricotti, L., Trimmer, B., Feinberg, A. W., Raman, R., Parker, K. K., Bashir, R., Sitti, M., Martel, S., Dario, P., Menciassi, A.

Science Robotics, 2(12), Science Robotics, November 2017 (article)

Abstract
Actuation is essential for artificial machines to interact with their surrounding environment and to accomplish the functions for which they are designed. Over the past few decades, there has been considerable progress in developing new actuation technologies. However, controlled motion still represents a considerable bottleneck for many applications and hampers the development of advanced robots, especially at small length scales. Nature has solved this problem using molecular motors that, through living cells, are assembled into multiscale ensembles with integrated control systems. These systems can scale force production from piconewtons up to kilonewtons. By leveraging the performance of living cells and tissues and directly interfacing them with artificial components, it should be possible to exploit the intricacy and metabolic efficiency of biological actuation within artificial machines. We provide a survey of important advances in this biohybrid actuation paradigm.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Online Learning with Stochastic Recurrent Neural Networks using Intrinsic Motivation Signals

Tanneberg, D., Peters, J., Rueckert, E.

Proceedings of the 1st Annual Conference on Robot Learning (CoRL), pages: 167-174, Proceedings of Machine Learning Research, (Editors: Sergey Levine, Vincent Vanhoucke and Ken Goldberg), PMLR, November 2017 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Behind Distribution Shift: Mining Driving Forces of Changes and Causal Arrows

Huang, B., Zhang, K., Zhang, J., Sanchez-Romero, R., Glymour, C., Schölkopf, B.

IEEE 17th International Conference on Data Mining (ICDM), pages: 913-918, (Editors: Vijay Raghavan,Srinivas Aluru, George Karypis, Lucio Miele and Xindong Wu), November 2017 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Efficient Online Adaptation with Stochastic Recurrent Neural Networks

Tanneberg, D., Peters, J., Rueckert, E.

IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), pages: 198-204, IEEE, November 2017 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Learning inverse dynamics models in O(n) time with LSTM networks

Rueckert, E., Nakatenus, M., Tosatto, S., Peters, J.

IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), pages: 811-816, IEEE, November 2017 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
A Comparison of Distance Measures for Learning Nonparametric Motor Skill Libraries

Stark, S., Peters, J., Rueckert, E.

IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), pages: 624-630, IEEE, November 2017 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Simulation of the underactuated Sake Robotics Gripper in V-REP

Thiem, S., Stark, S., Tanneberg, D., Peters, J., Rueckert, E.

Workshop at the International Conference on Humanoid Robots (HUMANOIDS), November 2017 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
End-to-End Learning for Image Burst Deblurring

Wieschollek, P., Schölkopf, B., Lensch, H. P. A., Hirsch, M.

Computer Vision - ACCV 2016 - 13th Asian Conference on Computer Vision, 10114, pages: 35-51, Image Processing, Computer Vision, Pattern Recognition, and Graphics, (Editors: Lai, S.-H., Lepetit, V., Nishino, K., and Sato, Y. ), Springer, November 2017 (conference)

ei

[BibTex]

[BibTex]


no image
Active Incremental Learning of Robot Movement Primitives

Maeda, G., Ewerton, M., Osa, T., Busch, B., Peters, J.

Proceedings of the 1st Annual Conference on Robot Learning (CoRL), 78, pages: 37-46, Proceedings of Machine Learning Research, (Editors: Sergey Levine, Vincent Vanhoucke and Ken Goldberg), PMLR, November 2017 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Online Video Deblurring via Dynamic Temporal Blending Network

Kim, T. H., Lee, K. M., Schölkopf, B., Hirsch, M.

Proceedings IEEE International Conference on Computer Vision (ICCV), pages: 4038-4047, IEEE, Piscataway, NJ, USA, IEEE International Conference on Computer Vision (ICCV), October 2017 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


Thumb xl teaser iccv2017
Bounding Boxes, Segmentations and Object Coordinates: How Important is Recognition for 3D Scene Flow Estimation in Autonomous Driving Scenarios?

Behl, A., Jafari, O. H., Mustikovela, S. K., Alhaija, H. A., Rother, C., Geiger, A.

In Proceedings IEEE International Conference on Computer Vision (ICCV), IEEE, Piscataway, NJ, USA, IEEE International Conference on Computer Vision (ICCV), October 2017 (inproceedings)

Abstract
Existing methods for 3D scene flow estimation often fail in the presence of large displacement or local ambiguities, e.g., at texture-less or reflective surfaces. However, these challenges are omnipresent in dynamic road scenes, which is the focus of this work. Our main contribution is to overcome these 3D motion estimation problems by exploiting recognition. In particular, we investigate the importance of recognition granularity, from coarse 2D bounding box estimates over 2D instance segmentations to fine-grained 3D object part predictions. We compute these cues using CNNs trained on a newly annotated dataset of stereo images and integrate them into a CRF-based model for robust 3D scene flow estimation - an approach we term Instance Scene Flow. We analyze the importance of each recognition cue in an ablation study and observe that the instance segmentation cue is by far strongest, in our setting. We demonstrate the effectiveness of our method on the challenging KITTI 2015 scene flow benchmark where we achieve state-of-the-art performance at the time of submission.

avg

pdf suppmat Poster Project Page [BibTex]

pdf suppmat Poster Project Page [BibTex]


Thumb xl 2016 enhancenet
EnhanceNet: Single Image Super-Resolution through Automated Texture Synthesis

Sajjadi, M. S. M., Schölkopf, B., Hirsch, M.

Proceedings IEEE International Conference on Computer Vision (ICCV), pages: 4501-4510, IEEE, Piscataway, NJ, USA, IEEE International Conference on Computer Vision (ICCV), October 2017 (conference)

ei

Arxiv Project link (url) DOI [BibTex]

Arxiv Project link (url) DOI [BibTex]


no image
Learning Blind Motion Deblurring

Wieschollek, P., Hirsch, M., Schölkopf, B., Lensch, H.

Proceedings IEEE International Conference on Computer Vision (ICCV), pages: 231-240, IEEE, Piscataway, NJ, USA, IEEE International Conference on Computer Vision (ICCV), October 2017 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


Thumb xl jonas teaser
Sparsity Invariant CNNs

Uhrig, J., Schneider, N., Schneider, L., Franke, U., Brox, T., Geiger, A.

International Conference on 3D Vision (3DV) 2017, International Conference on 3D Vision (3DV), October 2017 (conference)

Abstract
In this paper, we consider convolutional neural networks operating on sparse inputs with an application to depth upsampling from sparse laser scan data. First, we show that traditional convolutional networks perform poorly when applied to sparse data even when the location of missing data is provided to the network. To overcome this problem, we propose a simple yet effective sparse convolution layer which explicitly considers the location of missing data during the convolution operation. We demonstrate the benefits of the proposed network architecture in synthetic and real experiments \wrt various baseline approaches. Compared to dense baselines, the proposed sparse convolution network generalizes well to novel datasets and is invariant to the level of sparsity in the data. For our evaluation, we derive a novel dataset from the KITTI benchmark, comprising 93k depth annotated RGB images. Our dataset allows for training and evaluating depth upsampling and depth prediction techniques in challenging real-world settings.

avg

pdf suppmat Project Page Project Page [BibTex]

pdf suppmat Project Page Project Page [BibTex]


no image
Personalized Brain-Computer Interface Models for Motor Rehabilitation

Mastakouri, A., Weichwald, S., Ozdenizci, O., Meyer, T., Schölkopf, B., Grosse-Wentrup, M.

Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC), pages: 3024-3029, October 2017 (conference)

ei

ArXiv PDF DOI Project Page [BibTex]

ArXiv PDF DOI Project Page [BibTex]


Thumb xl gernot teaser
OctNetFusion: Learning Depth Fusion from Data

Riegler, G., Ulusoy, A. O., Bischof, H., Geiger, A.

International Conference on 3D Vision (3DV) 2017, International Conference on 3D Vision (3DV), October 2017 (conference)

Abstract
In this paper, we present a learning based approach to depth fusion, i.e., dense 3D reconstruction from multiple depth images. The most common approach to depth fusion is based on averaging truncated signed distance functions, which was originally proposed by Curless and Levoy in 1996. While this method is simple and provides great results, it is not able to reconstruct (partially) occluded surfaces and requires a large number frames to filter out sensor noise and outliers. Motivated by the availability of large 3D model repositories and recent advances in deep learning, we present a novel 3D CNN architecture that learns to predict an implicit surface representation from the input depth maps. Our learning based method significantly outperforms the traditional volumetric fusion approach in terms of noise reduction and outlier suppression. By learning the structure of real world 3D objects and scenes, our approach is further able to reconstruct occluded regions and to fill in gaps in the reconstruction. We demonstrate that our learning based approach outperforms both vanilla TSDF fusion as well as TV-L1 fusion on the task of volumetric fusion. Further, we demonstrate state-of-the-art 3D shape completion results.

avg

pdf Video 1 Video 2 Project Page Project Page [BibTex]

pdf Video 1 Video 2 Project Page Project Page [BibTex]


no image
Improving performance of linear field generation with multi-coil setup by optimizing coils position

Aghaeifar, A., Loktyushin, A., Eschelbach, M., Scheffler, K.

Magnetic Resonance Materials in Physics, Biology and Medicine, 30(Supplement 1):S259, 34th Annual Scientific Meeting of the European Society for Magnetic Resonance in Medicine and Biology (ESMRMB), October 2017 (poster)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Generalized exploration in policy search

van Hoof, H., Tanneberg, D., Peters, J.

Machine Learning, 106(9-10):1705-1724 , (Editors: Kurt Driessens, Dragi Kocev, Marko Robnik‐Sikonja, and Myra Spiliopoulou), October 2017, Special Issue of the ECML PKDD 2017 Journal Track (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Multi-frame blind image deconvolution through split frequency - phase recovery

Gauci, A., Abela, J., Cachia, E., Hirsch, M., ZarbAdami, K.

Proc. SPIE 10225, Eighth International Conference on Graphic and Image Processing (ICGIP 2016), pages: 1022511, (Editors: Yulin Wang, Tuan D. Pham, Vit Vozenilek, David Zhang, Yi Xie), October 2017 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Probabilistic Prioritization of Movement Primitives

Paraschos, A., Lioutikov, R., Peters, J., Neumann, G.

Proceedings of the International Conference on Intelligent Robot Systems, and IEEE Robotics and Automation Letters (RA-L), 2(4):2294-2301, October 2017 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Editorial for the Special Issue on Microdevices and Microsystems for Cell Manipulation

Hu, W., Ohta, A. T.

8, Multidisciplinary Digital Publishing Institute, September 2017 (misc)

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl 7 byung fig
Multifunctional Bacteria-Driven Microswimmers for Targeted Active Drug Delivery

Park, B., Zhuang, J., Yasa, O., Sitti, M.

ACS Nano, 11(9):8910-8923, September 2017, PMID: 28873304 (article)

Abstract
High-performance, multifunctional bacteria-driven microswimmers are introduced using an optimized design and fabrication method for targeted drug delivery applications. These microswimmers are made of mostly single Escherichia coli bacterium attached to the surface of drug-loaded polyelectrolyte multilayer (PEM) microparticles with embedded magnetic nanoparticles. The PEM drug carriers are 1 μm in diameter and are intentionally fabricated with a more viscoelastic material than the particles previously studied in the literature. The resulting stochastic microswimmers are able to swim at mean speeds of up to 22.5 μm/s. They can be guided and targeted to specific cells, because they exhibit biased and directional motion under a chemoattractant gradient and a magnetic field, respectively. Moreover, we demonstrate the microswimmers delivering doxorubicin anticancer drug molecules, encapsulated in the polyelectrolyte multilayers, to 4T1 breast cancer cells under magnetic guidance in vitro. The results reveal the feasibility of using these active multifunctional bacteria-driven microswimmers to perform targeted drug delivery with significantly enhanced drug transfer, when compared with the passive PEM microparticles.

pi

link (url) DOI Project Page [BibTex]


Thumb xl publications toc
EndoSensorFusion: Particle Filtering-Based Multi-sensory Data Fusion with Switching State-Space Model for Endoscopic Capsule Robots

Turan, M., Almalioglu, Y., Gilbert, H., Araujo, H., Cemgil, T., Sitti, M.

ArXiv e-prints, September 2017 (article)

Abstract
A reliable, real time multi-sensor fusion functionality is crucial for localization of actively controlled capsule endoscopy robots, which are an emerging, minimally invasive diagnostic and therapeutic technology for the gastrointestinal (GI) tract. In this study, we propose a novel multi-sensor fusion approach based on a particle filter that incorporates an online estimation of sensor reliability and a non-linear kinematic model learned by a recurrent neural network. Our method sequentially estimates the true robot pose from noisy pose observations delivered by multiple sensors. We experimentally test the method using 5 degree-of-freedom (5-DoF) absolute pose measurement by a magnetic localization system and a 6-DoF relative pose measurement by visual odometry. In addition, the proposed method is capable of detecting and handling sensor failures by ignoring corrupted data, providing the robustness expected of a medical device. Detailed analyses and evaluations are presented using ex-vivo experiments on a porcine stomach model prove that our system achieves high translational and rotational accuracies for different types of endoscopic capsule robot trajectories.

pi

link (url) Project Page [BibTex]


Thumb xl andreas teaser
Direct Visual Odometry for a Fisheye-Stereo Camera

Liu, P., Heng, L., Sattler, T., Geiger, A., Pollefeys, M.

In Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, Piscataway, NJ, USA, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), September 2017 (inproceedings)

Abstract
We present a direct visual odometry algorithm for a fisheye-stereo camera. Our algorithm performs simultaneous camera motion estimation and semi-dense reconstruction. The pipeline consists of two threads: a tracking thread and a mapping thread. In the tracking thread, we estimate the camera pose via semi-dense direct image alignment. To have a wider field of view (FoV) which is important for robotic perception, we use fisheye images directly without converting them to conventional pinhole images which come with a limited FoV. To address the epipolar curve problem, plane-sweeping stereo is used for stereo matching and depth initialization. Multiple depth hypotheses are tracked for selected pixels to better capture the uncertainty characteristics of stereo matching. Temporal motion stereo is then used to refine the depth and remove false positive depth hypotheses. Our implementation runs at an average of 20 Hz on a low-end PC. We run experiments in outdoor environments to validate our algorithm, and discuss the experimental results. We experimentally show that we are able to estimate 6D poses with low drift, and at the same time, do semi-dense 3D reconstruction with high accuracy.

avg

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Thumb xl publications toc
Endo-VMFuseNet: Deep Visual-Magnetic Sensor Fusion Approach for Uncalibrated, Unsynchronized and Asymmetric Endoscopic Capsule Robot Localization Data

Turan, M., Almalioglu, Y., Gilbert, H., Eren Sari, A., Soylu, U., Sitti, M.

ArXiv e-prints, September 2017 (article)

Abstract
In the last decade, researchers and medical device companies have made major advances towards transforming passive capsule endoscopes into active medical robots. One of the major challenges is to endow capsule robots with accurate perception of the environment inside the human body, which will provide necessary information and enable improved medical procedures. We extend the success of deep learning approaches from various research fields to the problem of uncalibrated, asynchronous, and asymmetric sensor fusion for endoscopic capsule robots. The results performed on real pig stomach datasets show that our method achieves sub-millimeter precision for both translational and rotational movements and contains various advantages over traditional sensor fusion techniques.

pi

link (url) Project Page [BibTex]


Thumb xl comp 5d copy
Magnetotactic Bacteria Powered Biohybrids Target E. coli Biofilms

Stanton, M. M., Park, B., Vilela, D., Bente, K., Faivre, D., Sitti, M., Sánchez, S.

ACS Nano, 0(0):null, September 2017, PMID: 28933815 (article)

Abstract
Biofilm colonies are typically resistant to general antibiotic treatment and require targeted methods for their removal. One of these methods includes the use of nanoparticles as carriers for antibiotic delivery, where they randomly circulate in fluid until they make contact with the infected areas. However, the required proximity of the particles to the biofilm results in only moderate efficacy. We demonstrate here that the nonpathogenic magnetotactic bacteria Magnetosopirrillum gryphiswalense (MSR-1) can be integrated with drug-loaded mesoporous silica microtubes to build controllable microswimmers (biohybrids) capable of antibiotic delivery to target an infectious biofilm. Applying external magnetic guidance capability and swimming power of the MSR-1 cells, the biohybrids are directed to and forcefully pushed into matured Escherichia coli (E. coli) biofilms. Release of the antibiotic, ciprofloxacin, is triggered by the acidic microenvironment of the biofilm, ensuring an efficient drug delivery system. The results reveal the capabilities of a nonpathogenic bacteria species to target and dismantle harmful biofilms, indicating biohybrid systems have great potential for antibiofilm applications.

pi

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Closing One’s Eyes Affects Amplitude Modulation but Not Frequency Modulation in a Cognitive BCI

Görner, M., Schölkopf, B., Grosse-Wentrup, M.

Proceedings of the 7th Graz Brain-Computer Interface Conference 2017 - From Vision to Reality, pages: 165-170, (Editors: Müller-Putz G.R., Steyrl D., Wriessnegger S. C., Scherer R.), Graz University of Technology, Austria, Graz Brain-Computer Interface Conference, September 2017 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
A Guided Task for Cognitive Brain-Computer Interfaces

Moser, J., Hohmann, M. R., Schölkopf, B., Grosse-Wentrup, M.

Proceedings of the 7th Graz Brain-Computer Interface Conference 2017 - From Vision to Reality, pages: 326-331, (Editors: Müller-Putz G.R., Steyrl D., Wriessnegger S. C., Scherer R.), Graz University of Technology, Austria, Graz Brain-Computer Interface Conference, September 2017 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Bayesian Regression for Artifact Correction in Electroencephalography

Fiebig, K., Jayaram, V., Hesse, T., Blank, A., Peters, J., Grosse-Wentrup, M.

Proceedings of the 7th Graz Brain-Computer Interface Conference 2017 - From Vision to Reality, pages: 131-136, (Editors: Müller-Putz G.R., Steyrl D., Wriessnegger S. C., Scherer R.), Graz University of Technology, Austria, Graz Brain-Computer Interface Conference, September 2017 (conference)

am ei

DOI [BibTex]

DOI [BibTex]


no image
Investigating Music Imagery as a Cognitive Paradigm for Low-Cost Brain-Computer Interfaces

Grossberger, L., Hohmann, M. R., Peters, J., Grosse-Wentrup, M.

Proceedings of the 7th Graz Brain-Computer Interface Conference 2017 - From Vision to Reality, pages: 160-164, (Editors: Müller-Putz G.R., Steyrl D., Wriessnegger S. C., Scherer R.), Graz University of Technology, Austria, Graz Brain-Computer Interface Conference, September 2017 (conference)

am ei

DOI [BibTex]

DOI [BibTex]


no image
Correlations of Motor Adaptation Learning and Modulation of Resting-State Sensorimotor EEG Activity

Ozdenizci, O., Yalcin, M., Erdogan, A., Patoglu, V., Grosse-Wentrup, M., Cetin, M.

Proceedings of the 7th Graz Brain-Computer Interface Conference 2017 - From Vision to Reality, pages: 384-388, (Editors: Müller-Putz G.R., Steyrl D., Wriessnegger S. C., Scherer R.), Graz University of Technology, Austria, Graz Brain-Computer Interface Conference, September 2017 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Weakly-Supervised Localization of Diabetic Retinopathy Lesions in Retinal Fundus Images

Gondal, M. W., Köhler, J. M., Grzeszick, R., Fink, G., Hirsch, M.

IEEE International Conference on Image Processing (ICIP), pages: 2069-2073, September 2017 (conference)

ei

arXiv DOI [BibTex]

arXiv DOI [BibTex]