Header logo is


2019


Thumb xl learning tactile servoing thumbnail
Learning Latent Space Dynamics for Tactile Servoing

Sutanto, G., Ratliff, N., Sundaralingam, B., Chebotar, Y., Su, Z., Handa, A., Fox, D.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2019, IEEE, International Conference on Robotics and Automation, May 2019 (inproceedings) Accepted

am

pdf video [BibTex]

2019


pdf video [BibTex]


no image
X-ray Optics Fabrication Using Unorthodox Approaches

Sanli, U., Baluktsian, M., Ceylan, H., Sitti, M., Weigand, M., Schütz, G., Keskinbora, K.

Bulletin of the American Physical Society, APS, 2019 (article)

mms pi

[BibTex]

[BibTex]


Thumb xl as20205.f2
Microrobotics and Microorganisms: Biohybrid Autonomous Cellular Robots

Alapan, Y., Yasa, O., Yigit, B., Yasa, I. C., Erkoc, P., Sitti, M.

Annual Review of Control, Robotics, and Autonomous Systems, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl c8sm02215a f1 hi res
The near and far of a pair of magnetic capillary disks

Koens, L., Wang, W., Sitti, M., Lauga, E.

Soft Matter, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl mt 2018 00757w 0007
Graphene oxide synergistically enhances antibiotic efficacy in Vancomycin resistance Staphylococcus aureus

Singh, V., Kumar, V., Kashyap, S., Singh, A. V., Kishore, V., Sitti, M., Saxena, P. S., Srivastava, A.

ACS Applied Bio Materials, ACS Publications, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl itxm a 1566425 f0001 c
Review of emerging concepts in nanotoxicology: opportunities and challenges for safer nanomaterial design

Singh, A. V., Laux, P., Luch, A., Sudrik, C., Wiehr, S., Wild, A., Santamauro, G., Bill, J., Sitti, M.

Toxicology Mechanisms and Methods, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl screenshot from 2019 03 21 12 11 19
Automated Generation of Reactive Programs from Human Demonstration for Orchestration of Robot Behaviors

Berenz, V., Bjelic, A., Mainprice, J.

ArXiv, 2019 (article)

Abstract
Social robots or collaborative robots that have to interact with people in a reactive way are difficult to program. This difficulty stems from the different skills required by the programmer: to provide an engaging user experience the behavior must include a sense of aesthetics while robustly operating in a continuously changing environment. The Playful framework allows composing such dynamic behaviors using a basic set of action and perception primitives. Within this framework, a behavior is encoded as a list of declarative statements corresponding to high-level sensory-motor couplings. To facilitate non-expert users to program such behaviors, we propose a Learning from Demonstration (LfD) technique that maps motion capture of humans directly to a Playful script. The approach proceeds by identifying the sensory-motor couplings that are active at each step using the Viterbi path in a Hidden Markov Model (HMM). Given these activation patterns, binary classifiers called evaluations are trained to associate activations to sensory data. Modularity is increased by clustering the sensory-motor couplings, leading to a hierarchical tree structure. The novelty of the proposed approach is that the learned behavior is encoded not in terms of trajectories in a task space, but as couplings between sensory information and high-level motor actions. This provides advantages in terms of behavioral generalization and reactivity displayed by the robot.

am

Support Video link (url) [BibTex]


Thumb xl adtp201800064 fig 0004 m
Mobile microrobots for active therapeutic delivery

Erkoc, P., Yasa, I. C., Ceylan, H., Yasa, O., Alapan, Y., Sitti, M.

Advanced Therapeutics, Wiley Online Library, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl adom201801313 fig 0001 m
Microfluidics Integrated Lithography‐Free Nanophotonic Biosensor for the Detection of Small Molecules

Sreekanth, K. V., Sreejith, S., Alapan, Y., Sitti, M., Lim, C. T., Singh, R.

Advanced Optical Materials, 2019 (article)

pi

[BibTex]

[BibTex]


no image
Electromechanical actuation of dielectric liquid crystal elastomers for soft robotics

Davidson, Z., Shahsavan, H., Guo, Y., Hines, L., Xia, Y., Yang, S., Sitti, M.

Bulletin of the American Physical Society, APS, 2019 (article)

pi

[BibTex]

[BibTex]

2008


no image
Learning to control in operational space

Peters, J., Schaal, S.

International Journal of Robotics Research, 27, pages: 197-212, 2008, clmc (article)

Abstract
One of the most general frameworks for phrasing control problems for complex, redundant robots is operational space control. However, while this framework is of essential importance for robotics and well-understood from an analytical point of view, it can be prohibitively hard to achieve accurate control in face of modeling errors, which are inevitable in com- plex robots, e.g., humanoid robots. In this paper, we suggest a learning approach for opertional space control as a direct inverse model learning problem. A first important insight for this paper is that a physically cor- rect solution to the inverse problem with redundant degrees-of-freedom does exist when learning of the inverse map is performed in a suitable piecewise linear way. The second crucial component for our work is based on the insight that many operational space controllers can be understood in terms of a constrained optimal control problem. The cost function as- sociated with this optimal control problem allows us to formulate a learn- ing algorithm that automatically synthesizes a globally consistent desired resolution of redundancy while learning the operational space controller. From the machine learning point of view, this learning problem corre- sponds to a reinforcement learning problem that maximizes an immediate reward. We employ an expectation-maximization policy search algorithm in order to solve this problem. Evaluations on a three degrees of freedom robot arm are used to illustrate the suggested approach. The applica- tion to a physically realistic simulator of the anthropomorphic SARCOS Master arm demonstrates feasibility for complex high degree-of-freedom robots. We also show that the proposed method works in the setting of learning resolved motion rate control on real, physical Mitsubishi PA-10 medical robotics arm.

am ei

link (url) DOI [BibTex]

2008


link (url) DOI [BibTex]


no image
ENHANCED ADHESION OF PDMS SURFACES FUNCTIONALIZED BY POLY (n-BUTYL ACRYLATE) BRUSHES INSPIRED BY GECKO FOOT HAIRS

Nese, A., Lee, H., Dong, H., Aksak, B., Cusick, B., Kowalewski, T., Matyjaszewski, K., Sitti, M.

Polymer Preprints, 49(2):107, 2008 (article)

pi

[BibTex]

[BibTex]


no image
Design and development of the lifting and propulsion mechanism for a biologically inspired water runner robot

Floyd, S., Sitti, M.

IEEE transactions on robotics, 24(3):698-709, IEEE, 2008 (article)

pi

[BibTex]

[BibTex]


no image
Control of Cell Behavior by Aligned Micro/Nanofibrous Biomaterial Scaffolds Fabricated by Spinneret-Based Tunable Engineered Parameters (STEP) Technique

Nain, A. S., Phillippi, J. A., Sitti, M., MacKrell, J., Campbell, P. G., Amon, C.

Small, 4(8):1153-1159, Wiley Online Library, 2008 (article)

pi

[BibTex]

[BibTex]


no image
Simulation and analysis of a passive pitch reversal flapping wing mechanism for an aerial robotic platform

Arabagi, V., Sitti, M.

In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, pages: 1260-1265, 2008 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Biologically Inspired Polymer Micro-Patterned Adhesives

Cheung, E., Sitti, M.

EDGEWOOD CHEMICAL BIOLOGICAL CENTER ABERDEEN PROVING GROUND MD, 2008 (techreport)

pi

[BibTex]

[BibTex]


no image
Adaptation to a sub-optimal desired trajectory

M. Mistry, E. A. G. L. T. Y. S. S. M. K.

Advances in Computational Motor Control VII, Symposium at the Society for Neuroscience Meeting, Washington DC, 2008, 2008, clmc (article)

am

PDF [BibTex]

PDF [BibTex]


no image
Human movement generation based on convergent flow fields: A computational model and a behavioral experiment

Hoffmann, H., Schaal, S.

In Advances in Computational Motor Control VII, Symposium at the Society for Neuroscience Meeting, Washington DC, 2008, 2008, clmc (inproceedings)

am

link (url) [BibTex]

link (url) [BibTex]


no image
Rolling and spinning friction characterization of fine particles using lateral force microscopy based contact pushing

Sümer, B., Sitti, M.

Journal of Adhesion Science and Technology, 22(5-6):481-506, Taylor & Francis Group, 2008 (article)

pi

[BibTex]

[BibTex]


no image
Fabrication and Characterization of Biologically Inspired Mushroom-Shaped Elastomer Microfiber Arrays

Kim, S., Sitti, M.

In ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pages: 839-847, 2008 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Gecko inspired micro-fibrillar adhesives for wall climbing robots on micro/nanoscale rough surfaces

Aksak, B., Murphy, M. P., Sitti, M.

In Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, pages: 3058-3063, 2008 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Modeling the soft backing layer thickness effect on adhesion of elastic microfiber arrays

Long, R., Hui, C., Kim, S., Sitti, M.

Journal of Applied Physics, 104(4):044301, AIP, 2008 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Cross-talk compensation in atomic force microscopy

Onal, C. D., Sümer, B., Sitti, M.

Review of scientific instruments, 79(10):103706, AIP, 2008 (article)

pi

[BibTex]

[BibTex]


no image
Miniature Mobile Robots Down to Micron Scale

Sitti, M.

In Micro-NanoMechatronics and Human Science, 2008. MHS 2008. International Symposium on, pages: 525-525, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Operational space control: A theoretical and emprical comparison

Nakanishi, J., Cory, R., Mistry, M., Peters, J., Schaal, S.

International Journal of Robotics Research, 27(6):737-757, 2008, clmc (article)

Abstract
Dexterous manipulation with a highly redundant movement system is one of the hallmarks of hu- man motor skills. From numerous behavioral studies, there is strong evidence that humans employ compliant task space control, i.e., they focus control only on task variables while keeping redundant degrees-of-freedom as compliant as possible. This strategy is robust towards unknown disturbances and simultaneously safe for the operator and the environment. The theory of operational space con- trol in robotics aims to achieve similar performance properties. However, despite various compelling theoretical lines of research, advanced operational space control is hardly found in actual robotics imple- mentations, in particular new kinds of robots like humanoids and service robots, which would strongly profit from compliant dexterous manipulation. To analyze the pros and cons of different approaches to operational space control, this paper focuses on a theoretical and empirical evaluation of different methods that have been suggested in the literature, but also some new variants of operational space controllers. We address formulations at the velocity, acceleration and force levels. First, we formulate all controllers in a common notational framework, including quaternion-based orientation control, and discuss some of their theoretical properties. Second, we present experimental comparisons of these approaches on a seven-degree-of-freedom anthropomorphic robot arm with several benchmark tasks. As an aside, we also introduce a novel parameter estimation algorithm for rigid body dynamics, which ensures physical consistency, as this issue was crucial for our successful robot implementations. Our extensive empirical results demonstrate that one of the simplified acceleration-based approaches can be advantageous in terms of task performance, ease of parameter tuning, and general robustness and compliance in face of inevitable modeling errors.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Movement reproduction and obstacle avoidance with dynamic movement primitives and potential fields

Park, D., Hoffmann, H., Pastor, P., Schaal, S.

In IEEE International Conference on Humanoid Robots, 2008., 2008, clmc (inproceedings)

am

PDF [BibTex]

PDF [BibTex]


no image
The dual role of uncertainty in force field learning

Mistry, M., Theodorou, E., Hoffmann, H., Schaal, S.

In Abstracts of the Eighteenth Annual Meeting of Neural Control of Movement (NCM), Naples, Florida, April 29-May 4, 2008, clmc (inproceedings)

Abstract
Force field experiments have been a successful paradigm for studying the principles of planning, execution, and learning in human arm movements. Subjects have been shown to cope with the disturbances generated by force fields by learning internal models of the underlying dynamics to predict disturbance effects or by increasing arm impedance (via co-contraction) if a predictive approach becomes infeasible. Several studies have addressed the issue uncertainty in force field learning. Scheidt et al. demonstrated that subjects exposed to a viscous force field of fixed structure but varying strength (randomly changing from trial to trial), learn to adapt to the mean disturbance, regardless of the statistical distribution. Takahashi et al. additionally show a decrease in strength of after-effects after learning in the randomly varying environment. Thus they suggest that the nervous system adopts a dual strategy: learning an internal model of the mean of the random environment, while simultaneously increasing arm impedance to minimize the consequence of errors. In this study, we examine what role variance plays in the learning of uncertain force fields. We use a 7 degree-of-freedom exoskeleton robot as a manipulandum (Sarcos Master Arm, Sarcos, Inc.), and apply a 3D viscous force field of fixed structure and strength randomly selected from trial to trial. Additionally, in separate blocks of trials, we alter the variance of the randomly selected strength multiplier (while keeping a constant mean). In each block, after sufficient learning has occurred, we apply catch trials with no force field and measure the strength of after-effects. As expected in higher variance cases, results show increasingly smaller levels of after-effects as the variance is increased, thus implying subjects choose the robust strategy of increasing arm impedance to cope with higher levels of uncertainty. Interestingly, however, subjects show an increase in after-effect strength with a small amount of variance as compared to the deterministic (zero variance) case. This result implies that a small amount of variability aides in internal model formation, presumably a consequence of the additional amount of exploration conducted in the workspace of the task.

am

[BibTex]

[BibTex]


no image
Dynamic movement primitives for movement generation motivated by convergent force fields in frog

Hoffmann, H., Pastor, P., Schaal, S.

In Adaptive Motion of Animals and Machines (AMAM), 2008, clmc (inproceedings)

am

PDF [BibTex]

PDF [BibTex]


no image
Adhesion of biologically inspired oil-coated polymer micropillars

Cheung, E., Sitti, M.

Journal of Adhesion Science and Technology, 22(5-6):569-589, Taylor & Francis Group, 2008 (article)

pi

[BibTex]

[BibTex]


no image
Polymeric Micro/Nanofiber Manufacturing and Mechanical Characterization

Nain, A. S., Sitti, M., Amon, C.

In ASME 2008 International Mechanical Engineering Congress and Exposition, pages: 295-303, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
An untethered magnetically actuated micro-robot capable of motion on arbitrary surfaces

Floyd, S., Pawashe, C., Sitti, M.

In Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, pages: 419-424, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Fabrication of bio-inspired elastomer nanofiber arrays with spatulate tips using notching effect

Kim, S., Sitti, M., Jang, J., Thomas, E. L.

In Nanotechnology, 2008. NANO’08. 8th IEEE Conference on, pages: 780-782, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
A motorized anchoring mechanism for a tethered capsule robot using fibrillar adhesives for interventions in the esophagus

Glass, P., Cheung, E., Wang, H., Appasamy, R., Sitti, M.

In Biomedical Robotics and Biomechatronics, 2008. BioRob 2008. 2nd IEEE RAS & EMBS International Conference on, pages: 758-764, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Vision-based feedback strategy for controlled pushing of microparticles

Lynch, N. A., Onal, C. D., Schuster, E., Sitti, M.

Journal of Micro-Nano Mechatronics, 4(1-2):73-83, Springer-Verlag, 2008 (article)

pi

[BibTex]

[BibTex]


no image
Effect of quantity and configuration of attached bacteria on bacterial propulsion of microbeads

Behkam, B., Sitti, M.

Applied Physics Letters, 93(22):223901, AIP, 2008 (article)

pi

[BibTex]

[BibTex]


no image
Efficient inverse kinematics algorithms for highdimensional movement systems

Tevatia, G., Schaal, S.

CLMC Technical Report: TR-CLMC-2008-1, 2008, clmc (techreport)

Abstract
Real-time control of the endeffector of a humanoid robot in external coordinates requires computationally efficient solutions of the inverse kinematics problem. In this context, this paper investigates methods of resolved motion rate control (RMRC) that employ optimization criteria to resolve kinematic redundancies. In particular we focus on two established techniques, the pseudo inverse with explicit optimization and the extended Jacobian method. We prove that the extended Jacobian method includes pseudo-inverse methods as a special solution. In terms of computational complexity, however, pseudo-inverse and extended Jacobian differ significantly in favor of pseudo-inverse methods. Employing numerical estimation techniques, we introduce a computationally efficient version of the extended Jacobian with performance comparable to the original version. Our results are illustrated in simulation studies with a multiple degree-offreedom robot, and were evaluated on an actual 30 degree-of-freedom full-body humanoid robot.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Behavioral experiments on reinforcement learning in human motor control

Hoffmann, H., Theodorou, E., Schaal, S.

In Abstracts of the Eighteenth Annual Meeting of Neural Control of Movement (NCM), Naples, Florida, April 29-May 4, 2008, clmc (inproceedings)

Abstract
Reinforcement learning (RL) - learning solely based on reward or cost feedback - is widespread in robotics control and has been also suggested as computational model for human motor control. In human motor control, however, hardly any experiment studied reinforcement learning. Here, we study learning based on visual cost feedback in a reaching task and did three experiments: (1) to establish a simple enough experiment for RL, (2) to study spatial localization of RL, and (3) to study the dependence of RL on the cost function. In experiment (1), subjects sit in front of a drawing tablet and look at a screen onto which the drawing pen's position is projected. Beginning from a start point, their task is to move with the pen through a target point presented on screen. Visual feedback about the pen's position is given only before movement onset. At the end of a movement, subjects get visual feedback only about the cost of this trial. We choose as cost the squared distance between target and virtual pen position at the target line. Above a threshold value, the cost was fixed at this value. In the mapping of the pen's position onto the screen, we added a bias (unknown to subject) and Gaussian noise. As result, subjects could learn the bias, and thus, showed reinforcement learning. In experiment (2), we randomly altered the target position between three different locations (three different directions from start point: -45, 0, 45). For each direction, we chose a different bias. As result, subjects learned all three bias values simultaneously. Thus, RL can be spatially localized. In experiment (3), we varied the sensitivity of the cost function by multiplying the squared distance with a constant value C, while keeping the same cut-off threshold. As in experiment (2), we had three target locations. We assigned to each location a different C value (this assignment was randomized between subjects). Since subjects learned the three locations simultaneously, we could directly compare the effect of the different cost functions. As result, we found an optimal C value; if C was too small (insensitive cost), learning was slow; if C was too large (narrow cost valley), the exploration time was longer and learning delayed. Thus, reinforcement learning in human motor control appears to be sen

am

[BibTex]

[BibTex]


no image
Movement generation by learning from demonstration and generalization to new targets

Pastor, P., Hoffmann, H., Schaal, S.

In Adaptive Motion of Animals and Machines (AMAM), 2008, clmc (inproceedings)

am

PDF [BibTex]

PDF [BibTex]


no image
Combining dynamic movement primitives and potential fields for online obstacle avoidance

Park, D., Hoffmann, H., Schaal, S.

In Adaptive Motion of Animals and Machines (AMAM), Cleveland, Ohio, 2008, 2008, clmc (inproceedings)

am

link (url) [BibTex]

link (url) [BibTex]


no image
A library for locally weighted projection regression

Klanke, S., Vijayakumar, S., Schaal, S.

Journal of Machine Learning Research, 9, pages: 623-626, 2008, clmc (article)

Abstract
In this paper we introduce an improved implementation of locally weighted projection regression (LWPR), a supervised learning algorithm that is capable of handling high-dimensional input data. As the key features, our code supports multi-threading, is available for multiple platforms, and provides wrappers for several programming languages.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Fabrication of Single and Multi-Layer Fibrous Biomaterial Scaffolds for Tissue Engineering

Nain, A. S., Miller, E., Sitti, M., Campbell, P., Amon, C.

In ASME 2008 International Mechanical Engineering Congress and Exposition, pages: 231-238, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Performance of different foot designs for a water running robot

Floyd, S., Adilak, S., Ramirez, S., Rogman, R., Sitti, M.

In Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, pages: 244-250, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Dynamic modeling of a basilisk lizard inspired quadruped robot running on water

Park, H. S., Floyd, S., Sitti, M.

In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, pages: 3101-3107, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Bacterial propulsion of chemically patterned micro-cylinders

Behkam, B., Sitti, M.

In Biomedical Robotics and Biomechatronics, 2008. BioRob 2008. 2nd IEEE RAS & EMBS International Conference on, pages: 753-757, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Preface to the Journal of Micro-Nano Mechatronics

Dario, P., Fukuda, T., Sitti, M.

Journal of Micro-Nano Mechatronics, 4(1-2):1-1, Springer-Verlag, 2008 (article)

pi

[BibTex]

[BibTex]


no image
A legged anchoring mechanism for capsule endoscopes using micropatterned adhesives

Glass, P., Cheung, E., Sitti, M.

IEEE Transactions on Biomedical Engineering, 55(12):2759-2767, IEEE, 2008 (article)

pi

Project Page [BibTex]

Project Page [BibTex]