Header logo is


2015


no image
Distributed Event-based State Estimation

Trimpe, S.

Max Planck Institute for Intelligent Systems, November 2015 (techreport)

Abstract
An event-based state estimation approach for reducing communication in a networked control system is proposed. Multiple distributed sensor-actuator-agents observe a dynamic process and sporadically exchange their measurements and inputs over a bus network. Based on these data, each agent estimates the full state of the dynamic system, which may exhibit arbitrary inter-agent couplings. Local event-based protocols ensure that data is transmitted only when necessary to meet a desired estimation accuracy. This event-based scheme is shown to mimic a centralized Luenberger observer design up to guaranteed bounds, and stability is proven in the sense of bounded estimation errors for bounded disturbances. The stability result extends to the distributed control system that results when the local state estimates are used for distributed feedback control. Simulation results highlight the benefit of the event-based approach over classical periodic ones in reducing communication requirements.

am ics

arXiv [BibTex]

2015


arXiv [BibTex]


Thumb xl toc image patent
Methods of forming dry adhesive structures

Sitti, M., Murphy, M., Aksak, B.

September 2015, US Patent 9,120,953 (patent)

Abstract
Methods of forming dry adhesives including a method of making a dry adhesive including applying a liquid polymer to the second end of the stem, molding the liquid polymer on the stem in a mold, wherein the mold includes a recess having a cross-sectional area that is less than a cross-sectional area of the second end of the stem, curing the liquid polymer in the mold to form a tip at the second end of the stem, wherein the tip includes a second layer stem; corresponding to the recess in the mold, and removing the tip from the mold after the liquid polymer cures.

pi

[BibTex]

[BibTex]


Thumb xl toc image patent
Micro-fiber arrays with tip coating and transfer method for preparing same

Sitti, M., Washburn, N. R., Glass, P. S., Chung, H.

July 2015, US Patent 9,079,215 (patent)

Abstract
Present invention describes a patterned and coated micro- and nano-scale fibers elastomeric material for enhanced adhesion in wet or dry environments. A multi-step fabrication process including optical lithography, micromolding, polymer synthesis, dipping, stamping, and photopolymerization is described to produce uniform arrays of micron-scale fibers with mushroom-shaped tips coated with a thin layer of an intrinsically adhesive synthetic polymer, such as lightly crosslinked p(DMA-co-MEA).

pi

[BibTex]

[BibTex]


Thumb xl toc image patent
Dry adhesives and methods for making dry adhesives

Sitti, M., Murphy, M., Aksak, B.

March 2015, US Patent App. 14/625,162 (patent)

Abstract
Dry adhesives and methods for forming dry adhesives. A method of forming a dry adhesive structure on a substrate, comprises: forming a template backing layer of energy sensitive material on the substrate; forming a template layer of energy sensitive material on the template backing layer; exposing the template layer to a predetermined pattern of energy; removing a portion of the template layer related to the predetermined pattern of energy, and leaving a template structure formed from energy sensitive material and connected to the substrate via the template backing layer.

pi

[BibTex]

[BibTex]

2007


no image
Relative Entropy Policy Search

Peters, J.

CLMC Technical Report: TR-CLMC-2007-2, Computational Learning and Motor Control Lab, Los Angeles, CA, 2007, clmc (techreport)

Abstract
This technical report describes a cute idea of how to create new policy search approaches. It directly relates to the Natural Actor-Critic methods but allows the derivation of one shot solutions. Future work may include the application to interesting problems.

am ei

PDF link (url) [BibTex]

2007


PDF link (url) [BibTex]


no image
Learning an Outlier-Robust Kalman Filter

Ting, J., Theodorou, E., Schaal, S.

CLMC Technical Report: TR-CLMC-2007-1, Los Angeles, CA, 2007, clmc (techreport)

Abstract
We introduce a modified Kalman filter that performs robust, real-time outlier detection, without the need for manual parameter tuning by the user. Systems that rely on high quality sensory data (for instance, robotic systems) can be sensitive to data containing outliers. The standard Kalman filter is not robust to outliers, and other variations of the Kalman filter have been proposed to overcome this issue. However, these methods may require manual parameter tuning, use of heuristics or complicated parameter estimation procedures. Our Kalman filter uses a weighted least squares-like approach by introducing weights for each data sample. A data sample with a smaller weight has a weaker contribution when estimating the current time step?s state. Using an incremental variational Expectation-Maximization framework, we learn the weights and system dynamics. We evaluate our Kalman filter algorithm on data from a robotic dog.

am

PDF [BibTex]

PDF [BibTex]