Header logo is


2012


Fourier-transform photocurrent spectroscopy using a supercontinuum light source
Fourier-transform photocurrent spectroscopy using a supercontinuum light source

Petermann, C., Beigang, R., Fischer, P.

APPLIED PHYSICS LETTERS, 100(6), 2012 (article)

Abstract
We demonstrate an implementation of frequency-encoded photocurrent spectroscopy using a super-continuum light source. The spectrally broad light is spatially dispersed and modulated with a special mechanical chopper design that permits a continuous wavelength-dependent modulation. After recombination, the light beam contains a frequency encoded spectrum which enables us to map the spectral response of a given sample in 60 ms and with a lateral resolution of 10 mu m. (C) 2012 American Institute of Physics.

pf

DOI [BibTex]

2012


DOI [BibTex]


Eine neue Form von Cavity Enhanced Absorption Spectroscopy
Eine neue Form von Cavity Enhanced Absorption Spectroscopy

Petermann, C., Fischer, P.

DE Gruyter, 79(1), 2012, Best paper award OPTO 2011 (article)

Abstract
Wir stellen eine Kopplungsmethode für resonatorgestützte Absorptionsmessungen vor, bei der Licht durch einen im Resonator platzierten akustooptischen Modulator aktiv ein- und ausgekoppelt wird. Dies ermöglicht es Cavity-Ring-Down-Spektroskopie (CRDS) mit breitbandigen und zeitlich inkohärenten Lichtquellen niedriger spektraler Leistungsdichte durchzuführen. Das Verfahren wird zum ersten Mal mit einer breitbandigen Superkontinuum-Quelle demonstriert.

___________________________________________________________________________________________

A new coupling scheme for cavity enhanced absorption spectroscopy makes use of an intracavity acousto-optical modulator to actively switch light into (and out of) a resonator. This allows cavity ringdown spectroscopy (CRDS) to be implemented with broadband temporally incoherent light sources with low spectral power densities. The method is demonstrated for the first time using a broadband supercontinuum source. Best paper award OPTO 2011.

pf

link (url) [BibTex]

link (url) [BibTex]

2010


Molecular QED of coherent and incoherent sum-frequency and second-harmonic generation in chiral liquids in the presence of a static electric field
Molecular QED of coherent and incoherent sum-frequency and second-harmonic generation in chiral liquids in the presence of a static electric field

Fischer, P., Salam, A.

MOLECULAR PHYSICS, 108(14):1857-1868, 2010 (article)

Abstract
Coherent second-order nonlinear optical processes are symmetry forbidden in centrosymmetric environments in the electric-dipole approximation. In liquids that contain chiral molecules, however, and which therefore lack mirror image symmetry, coherent sum-frequency generation is possible, whereas second-harmonic generation remains forbidden. Here we apply the theory of molecular quantum electrodynamics to the calculation of the matrix element, transition rate, and integrated signal intensity for sum-frequency and second-harmonic generation taking place in a chiral liquid in the presence and absence of a static electric field, to examine which coherent and incoherent processes exist in the electric-dipole approximation in liquids. Third- and fourth-order time-dependent perturbation theory is employed in combination with single-sided Feynman diagrams to evaluate two contributions arising from static field-free and field-induced processes. It is found that, in addition to the coherent term, an incoherent process exists for sum-frequency generation in liquids. Surprisingly, in the case of dc-field-induced second-harmonic generation, the incoherent contribution is found to always vanish for isotropic chiral liquids even though hyper-Rayleigh second-harmonic generation and electric-field-induced second-harmonic generation are both independently symmetry allowed in any liquid.

pf

DOI [BibTex]

2003


New electro-optic effect: Sum-frequency generation from optically active liquids in the presence of a dc electric field
New electro-optic effect: Sum-frequency generation from optically active liquids in the presence of a dc electric field

Fischer, P., Buckingham, A., Beckwitt, K., Wiersma, D., Wise, F.

PHYSICAL REVIEW LETTERS, 91(17), 2003 (article)

Abstract
We report the observation of sum-frequency signals that depend linearly on an applied electrostatic field and that change sign with the handedness of an optically active solute. This recently predicted chiral electro-optic effect exists in the electric-dipole approximation. The static electric field gives rise to an electric-field-induced sum-frequency signal (an achiral third-order process) that interferes with the chirality-specific sum-frequency at second order. The cross-terms linear in the electrostatic field constitute the effect and may be used to determine the absolute sign of second- and third-order nonlinear-optical susceptibilities in isotropic media.

pf

DOI [BibTex]

2003


DOI [BibTex]


Chiral and achiral contributions to sum-frequency generation from optically active solutions of binaphthol
Chiral and achiral contributions to sum-frequency generation from optically active solutions of binaphthol

Fischer, P., Wise, F., Albrecht, A.

JOURNAL OF PHYSICAL CHEMISTRY A, 107(40):8232-8238, 2003 (article)

Abstract
The nonlinear sum- and difference-frequency generation spectroscopies can be probes of molecular chirality in optically active systems. We present a tensorial analysis of the chirality-specific electric-dipolar sum-frequency-generation susceptibility and the achiral electric-quadrupolar and magnetic-dipolar nonlinearities at second order in isotropic media. The chiral and achiral contributions to the sum-frequency signal from the bulk of optically active solutions of 1,1'-bi-2-naphthol (2,2'-dehydroxy-1,1'-binaphthyl) can be distinguished, and the former dominates. Ab initio computations reveal the dramatic resonance enhancement that the isotropic component of the electric-dipolar three-wave mixing hyperpolarizability experiences. Away from resonance its magnitude rapidly decreases, as-unlike the vector component-it is zero in the static limit. The dispersion of the first hyperpolarizability is computed by a configuration interaction singles sum-over-states approach with explicit regard to the Franck-Condon active vibrational substructure for all resonant electronic states.

pf

DOI [BibTex]

DOI [BibTex]

2000


Phenomenological damping in optical response tensors
Phenomenological damping in optical response tensors

Buckingham, A., Fischer, P.

PHYSICAL REVIEW A, 61(3), 2000 (article)

Abstract
Although perturbation theory applied to the optical response of a molecule or material system is only strictly valid far from resonances, it is often applied to ``near-resonance{''} conditions by means of complex energies incorporating damping. Inconsistent signs of the damping in optical response tensors have appeared in the recent literature, as have errors in the treatment of the perturbation by a static held. The ``equal-sign{''} convention used in a recent publication yields an unphysical material response, and Koroteev's intimation that linear electro-optical circular dichroism may exist in an optically active liquid under resonance conditions is also flawed. We show that the isotropic part of the Pockels tensor vanishes.

pf

DOI [BibTex]

2000


DOI [BibTex]


Ab initio investigation of the sum-frequency hyperpolarizability of small chiral molecules
Ab initio investigation of the sum-frequency hyperpolarizability of small chiral molecules

Champagne, B., Fischer, P., Buckingham, A.

CHEMICAL PHYSICS LETTERS, 331(1):83-88, 2000 (article)

Abstract
Using a sum-over-states procedure based on configuration interaction singles /6-311++G{*}{*}, we have computed the sum-frequency hyperpolarizability beta (ijk)(-3 omega; 2 omega, omega) Of two small chiral molecules, R-monofluoro-oxirane and R-(+)-propylene oxide. Excitation energies were scaled to fit experimental UV-absorption data and checked with ab initio values from time-dependent density functional theory. The isotropic part of the computed hyperpolarizabilities, beta(-3 omega; 2 omega, omega), is much smaller than that reported previously from sum-frequency generation experiments on aqueous solutions of arabinose. Comparison is made with a single-centre chiral model. (C) 2000 Elsevier Science B.V. All rights reserved.

pf

DOI [BibTex]

DOI [BibTex]


Three-wave mixing in chiral liquids
Three-wave mixing in chiral liquids

Fischer, P., Wiersma, D., Righini, R., Champagne, B., Buckingham, A.

PHYSICAL REVIEW LETTERS, 85(20):4253-4256, 2000 (article)

Abstract
Second-order nonlinear optical frequency conversion in isotropic systems is only dipole allowed for sum- and difference-frequency generation in chiral media. We develop a single-center chiral model of the three-wave mixing (sum:frequency generation) nonlinearity and estimate its magnitude. We also report results from ab initio calculations and from three- and four-wave mixing experiments in support of the theoretical estimates. We show that the second-order susceptibility in chiral liquids is much smaller than previously thought.

pf

DOI [BibTex]

DOI [BibTex]