Header logo is


2019


The acoustic hologram and particle manipulation with structured acoustic fields
The acoustic hologram and particle manipulation with structured acoustic fields

Melde, K.

Karlsruher Institut für Technologie (KIT), May 2019 (phdthesis)

Abstract
This thesis presents holograms as a novel approach to create arbitrary ultrasound fields. It is shown how any wavefront can simply be encoded in the thickness profile of a phase plate. Contemporary 3D-printers enable fabrication of structured surfaces with feature sizes corresponding to wavelengths of ultrasound up to 7.5 MHz in water—covering the majority of medical and industrial applications. The whole workflow for designing and creating acoustic holograms has been developed and is presented in this thesis. To reconstruct the encoded fields a single transducer element is sufficient. Arbitrary fields are demonstrated in transmission and reflection configurations in water and air and validated by extensive hydrophone scans. To complement these time-consuming measurements a new approach, based on thermography, is presented, which enables volumetric sound field scans in just a few seconds. Several original experiments demonstrate the advantages of using acoustic holograms for particle manipulation. Most notably, directed parallel assembly of microparticles in the shape of a projected acoustic image has been shown and extended to a fabrication method by fusing the particles in a polymerization reaction. Further, seemingly dynamic propulsion from a static hologram is demonstrated by controlling the phase gradient along a projected track. The necessary complexity to create ultrasound fields with set amplitude and phase distributions is easily managed using acoustic holograms. The acoustic hologram is a simple and cost-effective tool for shaping ultrasound fields with high-fidelity. It is expected to have an impact in many applications where ultrasound is employed.

pf

link (url) DOI [BibTex]

2019



Dynamics of self-propelled colloids and their application as active matter
Dynamics of self-propelled colloids and their application as active matter

Choudhury, U.

University of Groningen, Zernike Institute for Advanced Materials, 2019 (phdthesis)

Abstract
In this thesis, the behavior of active particles spanning from single particle dynamics to collective behavior of many particles is explored. Active colloids are out-of equilibrium systems that have been studied extensively over the past 15 years. This thesis addresses several phenomena that arise in the field of active colloids.

pf

link (url) [BibTex]

link (url) [BibTex]

2013


no image
Using Torque Redundancy to Optimize Contact Forces in Legged Robots

Righetti, L., Buchli, J., Mistry, M., Kalakrishnan, M., Schaal, S.

In Redundancy in Robot Manipulators and Multi-Robot Systems, 57, pages: 35-51, Lecture Notes in Electrical Engineering, Springer Berlin Heidelberg, 2013 (incollection)

Abstract
The development of legged robots for complex environments requires controllers that guarantee both high tracking performance and compliance with the environment. More specifically the control of contact interaction with the environment is of crucial importance to ensure stable, robust and safe motions. In the following, we present an inverse dynamics controller that exploits torque redundancy to directly and explicitly minimize any combination of linear and quadratic costs in the contact constraints and in the commands. Such a result is particularly relevant for legged robots as it allows to use torque redundancy to directly optimize contact interactions. For example, given a desired locomotion behavior, it can guarantee the minimization of contact forces to reduce slipping on difficult terrains while ensuring high tracking performance of the desired motion. The proposed controller is very simple and computationally efficient, and most importantly it can greatly improve the performance of legged locomotion on difficult terrains as can be seen in the experimental results.

am mg

link (url) [BibTex]

2013


link (url) [BibTex]

2010


no image
Locally weighted regression for control

Ting, J., Vijayakumar, S., Schaal, S.

In Encyclopedia of Machine Learning, pages: 613-624, (Editors: Sammut, C.;Webb, G. I.), Springer, 2010, clmc (inbook)

Abstract
This is article addresses two topics: learning control and locally weighted regression.

am

link (url) [BibTex]

2010


link (url) [BibTex]

2007


no image
Dynamics systems vs. optimal control ? a unifying view

Schaal, S, Mohajerian, P., Ijspeert, A.

In Progress in Brain Research, (165):425-445, 2007, clmc (inbook)

Abstract
In the past, computational motor control has been approached from at least two major frameworks: the dynamic systems approach and the viewpoint of optimal control. The dynamic system approach emphasizes motor control as a process of self-organization between an animal and its environment. Nonlinear differential equations that can model entrainment and synchronization behavior are among the most favorable tools of dynamic systems modelers. In contrast, optimal control approaches view motor control as the evolutionary or development result of a nervous system that tries to optimize rather general organizational principles, e.g., energy consumption or accurate task achievement. Optimal control theory is usually employed to develop appropriate theories. Interestingly, there is rather little interaction between dynamic systems and optimal control modelers as the two approaches follow rather different philosophies and are often viewed as diametrically opposing. In this paper, we develop a computational approach to motor control that offers a unifying modeling framework for both dynamic systems and optimal control approaches. In discussions of several behavioral experiments and some theoretical and robotics studies, we demonstrate how our computational ideas allow both the representation of self-organizing processes and the optimization of movement based on reward criteria. Our modeling framework is rather simple and general, and opens opportunities to revisit many previous modeling results from this novel unifying view.

am

link (url) [BibTex]

2007


link (url) [BibTex]

1991


no image
Ways to smarter CAD-systems

Ehrlenspiel, K., Schaal, S.

In Proceedings of ICED’91Heurista, pages: 10-16, (Editors: Hubka), Edition, Schriftenreihe WDK 21. Zürich, 1991, clmc (inbook)

am

[BibTex]

1991


[BibTex]