42 results
(View BibTeX file of all listed publications)

**Nanoscale robotic agents in biological fluids and tissues**
In *The Encyclopedia of Medical Robotics*, 2, pages: 19-42, 2, (Editors: Desai, J. P. and Ferreira, A.), World Scientific, October 2018 (inbook)

**Maschinelles Lernen: Entwicklung ohne Grenzen?**
In *Mit Optimismus in die Zukunft schauen. Künstliche Intelligenz - Chancen und Rahmenbedingungen*, pages: 26-34, (Editors: Bender, G. and Herbrich, R. and Siebenhaar, K.), B&S Siebenhaar Verlag, 2018 (incollection)

**Methods in Psychophysics**
In *Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience*, 5 (Methodology), 7, 4th, John Wiley & Sons, Inc., 2018 (inbook)

**Transfer Learning for BCIs**
In *Brain–Computer Interfaces Handbook*, pages: 425-442, 22, (Editors: Chang S. Nam, Anton Nijholt and Fabien Lotte), CRC Press, 2018 (incollection)

**Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence (UAI)**
pages: 869, AUAI Press, June 2016 (proceedings)

**Nonlinear functional causal models for distinguishing cause from effect**
In *Statistics and Causality: Methods for Applied Empirical Research*, pages: 185-201, 8, 1st, (Editors: Wolfgang Wiedermann and Alexander von Eye), John Wiley & Sons, Inc., 2016 (inbook)

**A cognitive brain–computer interface for patients with amyotrophic lateral sclerosis**
In *Brain-Computer Interfaces: Lab Experiments to Real-World Applications*, 228(Supplement C):221-239, 8, Progress in Brain Research, (Editors: Damien Coyle), Elsevier, 2016 (incollection)

**Screening Rules for Convex Problems**
2016 (unpublished) Submitted

**Projected Newton-type methods in machine learning**
In *Optimization for Machine Learning*, pages: 305-330, (Editors: Sra, S., Nowozin, S. and Wright, S. J.), MIT Press, Cambridge, MA, USA, December 2011 (inbook)

**Optimization for Machine Learning**
pages: 494, Neural information processing series, MIT Press, Cambridge, MA, USA, December 2011 (book)

**Bayesian Time Series Models**
pages: 432, Cambridge University Press, Cambridge, UK, August 2011 (book)

**JMLR Workshop and Conference Proceedings Volume 19: COLT 2011**
pages: 834, MIT Press, Cambridge, MA, USA, 24th Annual Conference on Learning Theory , June 2011 (proceedings)

**Statistical Learning Theory: Models, Concepts, and Results**
In *Handbook of the History of Logic, Vol. 10: Inductive Logic*, 10, pages: 651-706, (Editors: Gabbay, D. M., Hartmann, S. and Woods, J. H.), Elsevier North Holland, Amsterdam, Netherlands, May 2011 (inbook)

**Robot Learning**
In *Encyclopedia of Machine Learning*, pages: 865-869, Encyclopedia of machine learning, (Editors: Sammut, C. and Webb, G. I.), Springer, New York, NY, USA, January 2011 (inbook)

**What You Expect Is What You Get? Potential Use of Contingent Negative Variation for Passive BCI Systems in Gaze-Based HCI**
In *Affective Computing and Intelligent Interaction*, 6975, pages: 447-456, Lecture Notes in Computer Science, (Editors: D’Mello, S., Graesser, A., Schuller, B. and Martin, J.-C.), Springer, Berlin, Germany, 2011 (inbook)

**Kernel Methods in Bioinformatics **
In *Handbook of Statistical Bioinformatics*, pages: 317-334, Springer Handbooks of Computational Statistics ; 3, (Editors: Lu, H.H.-S., Schölkopf, B. and Zhao, H.), Springer, Berlin, Germany, 2011 (inbook)

**Handbook of Statistical Bioinformatics**
pages: 627, Springer Handbooks of Computational Statistics, Springer, Berlin, Germany, 2011 (book)

**Cue Combination: Beyond Optimality**
In *Sensory Cue Integration*, pages: 144-152, (Editors: Trommershäuser, J., Körding, K. and Landy, M. S.), Oxford University Press, 2011 (inbook)

**Support Vector Machine Learning for Interdependent and Structured Output Spaces**
In *Predicting Structured Data*, pages: 85-104, Advances in neural information processing systems, (Editors: Bakir, G. H. , T. Hofmann, B. Schölkopf, A. J. Smola, B. Taskar, S. V. N. Vishwanathan), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

**Brisk Kernel ICA**
In *Large Scale Kernel Machines*, pages: 225-250, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

**Predicting Structured Data**
pages: 360, Advances in neural information processing systems, MIT Press, Cambridge, MA, USA, September 2007 (book)

**Training a Support Vector Machine in the Primal**
In *Large Scale Kernel Machines*, pages: 29-50, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007, This is a slightly updated version of the Neural Computation paper (inbook)

**Approximation Methods for Gaussian Process Regression**
In *Large-Scale Kernel Machines*, pages: 203-223, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

**Advances in Neural Information Processing Systems 19: Proceedings of the 2006 Conference**
*Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems (NIPS 2006)*, pages: 1690, MIT Press, Cambridge, MA, USA, 20th Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (proceedings)

**Trading Convexity for Scalability**
In *Large Scale Kernel Machines*, pages: 275-300, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

**Classifying Event-Related Desynchronization in EEG, ECoG and MEG signals**
In *Toward Brain-Computer Interfacing*, pages: 235-260, Neural Information Processing, (Editors: G Dornhege and J del R Millán and T Hinterberger and DJ McFarland and K-R Müller), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

**Joint Kernel Maps**
In *Predicting Structured Data*, pages: 67-84, Advances in neural information processing systems, (Editors: GH Bakir and T Hofmann and B Schölkopf and AJ Smola and B Taskar and SVN Vishwanathan), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

**Brain-Computer Interfaces for Communication in Paralysis: A Clinical Experimental Approach**
In *Toward Brain-Computer Interfacing*, pages: 43-64, Neural Information Processing, (Editors: G. Dornhege and J del R Millán and T Hinterberger and DJ McFarland and K-R Müller), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

**Probabilistic Structure Calculation**
In *Structure and Biophysics: New Technologies for Current Challenges in Biology and Beyond*, pages: 81-98, NATO Security through Science Series, (Editors: Puglisi, J. D.), Springer, Berlin, Germany, March 2007 (inbook)

**On the Pre-Image Problem in Kernel Methods**
In *Kernel Methods in Bioengineering, Signal and Image Processing*, pages: 284-302, (Editors: G Camps-Valls and JL Rojo-Álvarez and M Martínez-Ramón), Idea Group Publishing, Hershey, PA, USA, January 2007 (inbook)

**Advanced Lectures on Machine Learning**
*ML Summer Schools 2003*, LNAI 3176, pages: 240, Springer, Berlin, Germany, ML Summer Schools, September 2004 (proceedings)

**Pattern Recognition: 26th DAGM Symposium, LNCS, Vol. 3175**
*Proceedings of the 26th Pattern Recognition Symposium (DAGM‘04)*, pages: 581, Springer, Berlin, Germany, 26th Pattern Recognition Symposium, August 2004 (proceedings)

**Kernel Methods in Computational Biology**
pages: 410, Computational Molecular Biology, MIT Press, Cambridge, MA, USA, August 2004 (book)

**Advances in Neural Information Processing Systems 16: Proceedings of the 2003 Conference**
*Proceedings of the Seventeenth Annual Conference on Neural Information Processing Systems (NIPS 2003)*, pages: 1621, MIT Press, Cambridge, MA, USA, 17th Annual Conference on Neural Information Processing Systems (NIPS), June 2004 (proceedings)

**Distributed Command Execution**
In *BSD Hacks: 100 industrial-strength tips & tools*, pages: 152-152, (Editors: Lavigne, Dru), O’Reilly, Beijing, May 2004 (inbook)

**Gaussian Processes in Machine Learning**
In 3176, pages: 63-71, Lecture Notes in Computer Science, (Editors: Bousquet, O., U. von Luxburg and G. Rätsch), Springer, Heidelberg, 2004, Copyright by Springer (inbook)

**Protein Classification via Kernel Matrix Completion**
In pages: 261-274, (Editors: Schoelkopf, B., K. Tsuda and J.P. Vert), MIT Press, Cambridge, MA; USA, 2004 (inbook)

**Introduction to Statistical Learning Theory**
In Lecture Notes in Artificial Intelligence 3176, pages: 169-207, (Editors: Bousquet, O., U. von Luxburg and G. Rätsch), Springer, Heidelberg, Germany, 2004 (inbook)

**A Primer on Kernel Methods**
In *Kernel Methods in Computational Biology*, pages: 35-70, (Editors: B Schölkopf and K Tsuda and JP Vert), MIT Press, Cambridge, MA, USA, 2004 (inbook)

**Concentration Inequalities**
In Lecture Notes in Artificial Intelligence 3176, pages: 208-240, (Editors: Bousquet, O., U. von Luxburg and G. Rätsch), Springer, Heidelberg, Germany, 2004 (inbook)

**Kernels for graphs**
In pages: 155-170, (Editors: Schoelkopf, B., K. Tsuda and J.P. Vert), MIT Press, Cambridge, MA; USA, 2004 (inbook)

**A primer on molecular biology**
In pages: 3-34, (Editors: Schoelkopf, B., K. Tsuda and J. P. Vert), MIT Press, Cambridge, MA, USA, 2004 (inbook)