Header logo is


2018


Gait learning for soft microrobots controlled by light fields
Gait learning for soft microrobots controlled by light fields

Rohr, A. V., Trimpe, S., Marco, A., Fischer, P., Palagi, S.

In International Conference on Intelligent Robots and Systems (IROS) 2018, pages: 6199-6206, International Conference on Intelligent Robots and Systems 2018, October 2018 (inproceedings)

Abstract
Soft microrobots based on photoresponsive materials and controlled by light fields can generate a variety of different gaits. This inherent flexibility can be exploited to maximize their locomotion performance in a given environment and used to adapt them to changing environments. However, because of the lack of accurate locomotion models, and given the intrinsic variability among microrobots, analytical control design is not possible. Common data-driven approaches, on the other hand, require running prohibitive numbers of experiments and lead to very sample-specific results. Here we propose a probabilistic learning approach for light-controlled soft microrobots based on Bayesian Optimization (BO) and Gaussian Processes (GPs). The proposed approach results in a learning scheme that is highly data-efficient, enabling gait optimization with a limited experimental budget, and robust against differences among microrobot samples. These features are obtained by designing the learning scheme through the comparison of different GP priors and BO settings on a semisynthetic data set. The developed learning scheme is validated in microrobot experiments, resulting in a 115% improvement in a microrobot’s locomotion performance with an experimental budget of only 20 tests. These encouraging results lead the way toward self-adaptive microrobotic systems based on lightcontrolled soft microrobots and probabilistic learning control.

ics pf

arXiv IEEE Xplore DOI Project Page [BibTex]

2018


arXiv IEEE Xplore DOI Project Page [BibTex]


Learning from Outside the Viability Kernel: Why we Should Build Robots that can Fail with Grace
Learning from Outside the Viability Kernel: Why we Should Build Robots that can Fail with Grace

Heim, S., Sproewitz, A.

Proceedings of SIMPAR 2018, pages: 55-61, IEEE, 2018 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR), May 2018 (conference)

dlg

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Soft Miniaturized Linear Actuators Wirelessly Powered by Rotating Permanent Magnets
Soft Miniaturized Linear Actuators Wirelessly Powered by Rotating Permanent Magnets

Qiu, T., Palagi, S., Sachs, J., Fischer, P.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 3595-3600, May 2018 (inproceedings)

Abstract
Wireless actuation by magnetic fields allows for the operation of untethered miniaturized devices, e.g. in biomedical applications. Nevertheless, generating large controlled forces over relatively large distances is challenging. Magnetic torques are easier to generate and control, but they are not always suitable for the tasks at hand. Moreover, strong magnetic fields are required to generate a sufficient torque, which are difficult to achieve with electromagnets. Here, we demonstrate a soft miniaturized actuator that transforms an externally applied magnetic torque into a controlled linear force. We report the design, fabrication and characterization of both the actuator and the magnetic field generator. We show that the magnet assembly, which is based on a set of rotating permanent magnets, can generate strong controlled oscillating fields over a relatively large workspace. The actuator, which is 3D-printed, can lift a load of more than 40 times its weight. Finally, we show that the actuator can be further miniaturized, paving the way towards strong, wirelessly powered microactuators.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Shaping in Practice: Training Wheels to Learn Fast Hopping Directly in Hardware
Shaping in Practice: Training Wheels to Learn Fast Hopping Directly in Hardware

Heim, S., Ruppert, F., Sarvestani, A., Sproewitz, A.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2018, pages: 5076-5081, IEEE, International Conference on Robotics and Automation, May 2018 (inproceedings)

Abstract
Learning instead of designing robot controllers can greatly reduce engineering effort required, while also emphasizing robustness. Despite considerable progress in simulation, applying learning directly in hardware is still challenging, in part due to the necessity to explore potentially unstable parameters. We explore the of concept shaping the reward landscape with training wheels; temporary modifications of the physical hardware that facilitate learning. We demonstrate the concept with a robot leg mounted on a boom learning to hop fast. This proof of concept embodies typical challenges such as instability and contact, while being simple enough to empirically map out and visualize the reward landscape. Based on our results we propose three criteria for designing effective training wheels for learning in robotics.

dlg

Video Youtube link (url) Project Page [BibTex]

Video Youtube link (url) Project Page [BibTex]


no image
Enhanced Non-Steady Gliding Performance of the MultiMo-Bat through Optimal Airfoil Configuration and Control Strategy

Kim, H., Woodward, M. A., Sitti, M.

In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 1382-1388, 2018 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Collectives of Spinning Mobile Microrobots for Navigation and Object Manipulation at the Air-Water Interface

Wang, W., Kishore, V., Koens, L., Lauga, E., Sitti, M.

In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 1-9, 2018 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Endo-VMFuseNet: A Deep Visual-Magnetic Sensor Fusion Approach for Endoscopic Capsule Robots

Turan, M., Almalioglu, Y., Gilbert, H. B., Sari, A. E., Soylu, U., Sitti, M.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 1-7, 2018 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Endosensorfusion: Particle filtering-based multi-sensory data fusion with switching state-space model for endoscopic capsule robots

Turan, M., Almalioglu, Y., Gilbert, H., Araujo, H., Cemgil, T., Sitti, M.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 1-8, 2018 (inproceedings)

pi

[BibTex]

[BibTex]

2010


Graph signature for self-reconfiguration planning of modules with symmetry
Graph signature for self-reconfiguration planning of modules with symmetry

Asadpour, M., Ashtiani, M. H. Z., Spröwitz, A., Ijspeert, A. J.

In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 5295-5300, IEEE, St. Louis, MO, 2010 (inproceedings)

Abstract
In our previous works we had developed a framework for self-reconfiguration planning based on graph signature and graph edit-distance. The graph signature is a fast isomorphism test between different configurations and the graph edit-distance is a similarity metric. But the algorithm is not suitable for modules with symmetry. In this paper we improve the algorithm in order to deal with symmetric modules. Also, we present a new heuristic function to guide the search strategy by penalizing the solutions with more number of actions. The simulation results show the new algorithm not only deals with symmetric modules successfully but also finds better solutions in a shorter time.

dlg

DOI [BibTex]

2010


DOI [BibTex]


Roombots - Towards decentralized reconfiguration with self-reconfiguring modular robotic metamodules
Roombots - Towards decentralized reconfiguration with self-reconfiguring modular robotic metamodules

Spröwitz, A., Laprade, P., Bonardi, S., Mayer, M., Moeckel, R., Mudry, P., Ijspeert, A. J.

In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 1126-1132, IEEE, Taipeh, 2010 (inproceedings)

Abstract
This paper presents our work towards a decentralized reconfiguration strategy for self-reconfiguring modular robots, assembling furniture-like structures from Roombots (RB) metamodules. We explore how reconfiguration by loco- motion from a configuration A to a configuration B can be controlled in a distributed fashion. This is done using Roombots metamodules—two Roombots modules connected serially—that use broadcast signals, lookup tables of their movement space, assumptions about their neighborhood, and connections to a structured surface to collectively build desired structures without the need of a centralized planner.

dlg

DOI [BibTex]

DOI [BibTex]


Automatic Gait Generation in Modular Robots: to Oscillate or to Rotate? that is the question
Automatic Gait Generation in Modular Robots: to Oscillate or to Rotate? that is the question

Pouya, S., van den Kieboom, J., Spröwitz, A., Ijspeert, A. J.

In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 514-520, IEEE, Taipei, 2010 (inproceedings)

Abstract
Modular robots offer the possibility to design robots with a high diversity of shapes and functionalities. This nice feature also brings an important challenge: namely how to design efficient locomotion gaits for arbitrary robot structures with many degrees of freedom. In this paper, we present a framework that allows one to explore and identify highly different gaits for a given arbitrary- shaped modular robot. We use simulated robots made of several Roombots modules that have three rotational joints each. These modules have the interesting feature that they can produce both oscillatory movements (i.e. periodic movements around a rest position) and rotational movements (i.e. with continuously increasing angle), leading to very rich locomotion patterns. Here we ask ourselves which types of movements —purely oscillatory, purely rotational, or a combination of both— lead to the fastest gaits. To address this question we designed a control architecture based on a distributed system of coupled phase oscillators that can produce synchronized rotations and oscillations in many degrees of freedom. We also designed a specific optimization algorithm that can automatically design hybrid controllers, i.e. controllers that use oscillations in some joints and rotations in others, for fast gaits. The proposed framework is verified by multiple simulations for several robot morphologies. The results show that (i) the question whether it is better to oscillate or to rotate depends on the morphology of the robot, and that in general it is best to do both, (ii) the optimization framework can successfully generate hybrid controllers that outperform purely oscillatory and purely rotational ones, and (iii) the resulting gaits are fast, innovative, and would have been hard to design by hand.

dlg

DOI [BibTex]

DOI [BibTex]


no image
Adhesion recovery and passive peeling in a wall climbing robot using adhesives

Kute, C., Murphy, M. P., Mengüç, Y., Sitti, M.

In Robotics and Automation (ICRA), 2010 IEEE International Conference on, pages: 2797-2802, 2010 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Comparison of linear and nonlinear buck converter models with varying compensator gain values for design optimization

Sattler, Michael, Lui, Yusi, Edrington, Chris S

In North American Power Symposium (NAPS), 2010, pages: 1-7, 2010 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Enhancing the performance of Bio-inspired adhesives

Chung, H., Glass, P., Sitti, M., Washburn, N. R.

In ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 240, 2010 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Control performance simulation in the design of a flapping wing micro-aerial vehicle

Hines, L. L., Arabagi, V., Sitti, M.

In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages: 1090-1095, 2010 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Surface tension driven water strider robot using circular footpads

Ozcan, O., Wang, H., Taylor, J. D., Sitti, M.

In Robotics and Automation (ICRA), 2010 IEEE International Conference on, pages: 3799-3804, 2010 (inproceedings)

pi

[BibTex]

[BibTex]

2009


Roombots-mechanical design of self-reconfiguring modular robots for adaptive furniture
Roombots-mechanical design of self-reconfiguring modular robots for adaptive furniture

Spröwitz, A., Billard, A., Dillenbourg, P., Ijspeert, A. J.

In Proceedings of the 2009 IEEE International Conference on Robotics and Automation (ICRA), pages: 4259-4264, IEEE, Kobe, 2009 (inproceedings)

Abstract
We aim at merging technologies from information technology, roomware, and robotics in order to design adaptive and intelligent furniture. This paper presents design principles for our modular robots, called Roombots, as future building blocks for furniture that moves and self-reconfigures. The reconfiguration is done using dynamic connection and disconnection of modules and rotations of the degrees of freedom. We are furthermore interested in applying Roombots towards adaptive behaviour, such as online learning of locomotion patterns. To create coordinated and efficient gait patterns, we use a Central Pattern Generator (CPG) approach, which can easily be optimized by any gradient-free optimization algorithm. To provide a hardware framework we present the mechanical design of the Roombots modules and an active connection mechanism based on physical latches. Further we discuss the application of our Roombots modules as pieces of a homogenic or heterogenic mix of building blocks for static structures.

dlg

DOI [BibTex]

2009


DOI [BibTex]


no image
Characterization of bacterial actuation of micro-objects

Behkam, B., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 1022-1027, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Compliant footpad design analysis for a bio-inspired quadruped amphibious robot

Park, H. S., Sitti, M.

In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages: 645-651, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
A novel artificial hair receptor based on aligned PVDF micro/nano fibers

Weiting, Liu, Bilsay, Sumer, Cesare, Stefanini, Arianna, Menciassi, Fei, Li, Dajing, Chen, Paolo, Dario, Metin, Sitti, Xin, Fu

In Robotics and Biomimetics, 2008. ROBIO 2008. IEEE International Conference on, pages: 49-54, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Waalbot: Agile climbing with synthetic fibrillar dry adhesives

Murphy, M. P., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 1599-1600, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Piezoelectric ultrasonic resonant micromotor with a volume of less than 1 mm 3 for use in medical microbots

Watson, B., Friend, J., Yeo, L., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 2225-2230, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Dynamic modeling and analysis of pitch motion of a basilisk lizard inspired quadruped robot running on water

Park, H. S., Floyd, S., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 2655-2660, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
A miniature ceiling walking robot with flat tacky elastomeric footpads

Unver, O., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 2276-2281, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Tankbot: A miniature, peeling based climber on rough and smooth surfaces

Unver, O., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 2282-2287, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Automated 2-D nanoparticle manipulation with an atomic force microscope

Onal, C. D., Ozcan, O., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 1814-1819, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Microparticle manipulation using multiple untethered magnetic micro-robots on an electrostatic surface

Floyd, S., Pawashe, C., Sitti, M.

In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages: 528-533, 2009 (inproceedings)

pi

[BibTex]

[BibTex]

2007


An easy to use bluetooth scatternet protocol for fast data exchange in wireless sensor networks and autonomous robots
An easy to use bluetooth scatternet protocol for fast data exchange in wireless sensor networks and autonomous robots

Mockel, R., Spröwitz, A., Maye, J., Ijspeert, A. J.

In Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 2801-2806, IEEE, San Diego, CA, 2007 (inproceedings)

Abstract
We present a Bluetooth scatternet protocol (SNP) that provides the user with a serial link to all connected members in a transparent wireless Bluetooth network. By using only local decision making we can reduce the overhead of our scatternet protocol dramatically. We show how our SNP software layer simplifies a variety of tasks like the synchronization of central pattern generator controllers for actuators, collecting sensory data and building modular robot structures. The whole Bluetooth software stack including our new scatternet layer is implemented on a single Bluetooth and memory chip. To verify and characterize the SNP we provide data from experiments using real hardware instead of software simulation. This gives a realistic overview of the scatternet performance showing higher order effects that are difficult to be simulated correctly and guaranties the correct function of the SNP in real world applications.

dlg

DOI [BibTex]

2007


DOI [BibTex]


no image
A strategy for vision-based controlled pushing of microparticles

Lynch, N. A., Onal, C., Schuster, E., Sitti, M.

In Robotics and Automation, 2007 IEEE International Conference on, pages: 1413-1418, 2007 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Autonomous 2D microparticle manipulation based on visual feedback

Onal, C. D., Sitti, M.

In Advanced intelligent mechatronics, 2007 IEEE/ASME international conference on, pages: 1-6, 2007 (inproceedings)

pi

[BibTex]

[BibTex]


no image
STRIDE: A highly maneuverable and non-tethered water strider robot

Song, Y. S., Sitti, M.

In Robotics and Automation, 2007 IEEE International Conference on, pages: 980-984, 2007 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Dry spinning polymeric nano/microfiber arrays using glass micropipettes with controlled porosities and fiber diameters

Nain, A. S., Gupta, A., Amon, C., Sitti, M.

In Nanotechnology, 2007. IEEE-NANO 2007. 7th IEEE Conference on, pages: 728-732, 2007 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Microrobotically fabricated biological scaffolds for tissue engineering

Nain, A. S., Chung, F., Rule, M., Jadlowiec, J. A., Campbell, P. G., Amon, C., Sitti, M.

In Robotics and Automation, 2007 IEEE International Conference on, pages: 1918-1923, 2007 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Bacterial flagella assisted propulsion of patterned latex particles: Effect of particle size

Behkam, B., Sitti, M.

In Nanotechnology, 2007. IEEE-NANO 2007. 7th IEEE Conference on, pages: 723-727, 2007 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
A scaled bilateral control system for experimental 1-D teleoperated nanomanipulation applications

Onal, C. D., Pawashe, C., Sitti, M.

In Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on, pages: 483-488, 2007 (inproceedings)

pi

[BibTex]

[BibTex]

2006


Project course "Design of Mechatronic Systems"
Project course "Design of Mechatronic Systems"

Koch, C., Spröwitz, A., Radler, O., Strohla, T.

In IEEE International Conference on Mechatronics, pages: 69-72, IEEE, Budapest, 2006 (inproceedings)

Abstract
The course "Design of Mechatronic Systems" at Technische Universität Ilmenau imparts the systematic procedure of mechatronic design. This paper shows the main features of VDI Guideline 2206, which provides the structured background for students education in mechatronics. Furthermore practical teaching experiences and results from the course are described.

dlg

DOI [BibTex]

2006


DOI [BibTex]


no image
Miniature endoscopic capsule robot using biomimetic micro-patterned adhesives

Karagozler, M. E., Cheung, E., Kwon, J., Sitti, M.

In Biomedical Robotics and Biomechatronics, 2006. BioRob 2006. The First IEEE/RAS-EMBS International Conference on, pages: 105-111, 2006 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Toward micro wall-climbing robots using biomimetic fibrillar adhesives

Greuter, M., Shah, G., Caprari, G., Tâche, F., Siegwart, R., Sitti, M.

In Proceedings of the 3rd International Symposium on Autonomous Minirobots for Research and Edutainment (AMiRE 2005), pages: 39-46, 2006 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Geckobot: A gecko inspired climbing robot using elastomer adhesives

Unver, O., Uneri, A., Aydemir, A., Sitti, M.

In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, pages: 2329-2335, 2006 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Towards hybrid swimming microrobots: bacteria assisted propulsion of polystyrene beads

Behkam, B., Sitti, M.

In Engineering in Medicine and Biology Society, 2006. EMBS’06. 28th Annual International Conference of the IEEE, pages: 2421-2424, 2006 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Soft microcontact printing with force control using microrobotic assembly based templates

Tafazzoli, A., Sitti, M.

In Advanced Motion Control, 2006. 9th IEEE International Workshop on, pages: 500-505, 2006 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Modeling of the supporting legs for designing biomimetic water strider robots

Song, Y. S., Suhr, S. H., Sitti, M.

In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, pages: 2303-2310, 2006 (inproceedings)

pi

[BibTex]

[BibTex]


no image
A novel water running robot inspired by basilisk lizards

Floyd, S., Keegan, T., Palmisano, J., Sitti, M.

In Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on, pages: 5430-5436, 2006 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Force-controlled microcontact printing using microassembled particle templates

Tafazzoli, A., Pawashe, C., Sitti, M.

In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, pages: 263-268, 2006 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Waalbot: An agile small-scale wall climbing robot utilizing pressure sensitive adhesives

Murphy, M. P., Tso, W., Tanzini, M., Sitti, M.

In Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on, pages: 3411-3416, 2006 (inproceedings)

pi

[BibTex]

[BibTex]

1998


no image
Nano tele-manipulation using virtual reality interface

Sitti, M., Horiguchi, S., Hashimoto, H.

In Industrial Electronics, 1998. Proceedings. ISIE’98. IEEE International Symposium on, 1, pages: 171-176, 1998 (inproceedings)

pi

[BibTex]

1998


[BibTex]


no image
Tele-nanorobotics using atomic force microscope

Sitti, M., Hashimoto, H.

In Intelligent Robots and Systems, 1998. Proceedings., 1998 IEEE/RSJ International Conference on, 3, pages: 1739-1746, 1998 (inproceedings)

pi

[BibTex]

[BibTex]


no image
2D micro particle assembly using atomic force microscope

Sitti, M., Hirahara, K., Hashimoto, H.

In Micromechatronics and Human Science, 1998. MHS’98. Proceedings of the 1998 International Symposium on, pages: 143-148, 1998 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Macro to nano tele-manipulation through nanoelectromechanical systems

Sitti, M., Hashimoto, H.

In Industrial Electronics Society, 1998. IECON’98. Proceedings of the 24th Annual Conference of the IEEE, 1, pages: 98-103, 1998 (inproceedings)

pi

[BibTex]

[BibTex]