Header logo is


2019


Controlling Heterogeneous Stochastic Growth Processes on Lattices with Limited Resources
Controlling Heterogeneous Stochastic Growth Processes on Lattices with Limited Resources

Haksar, R., Solowjow, F., Trimpe, S., Schwager, M.

In Proceedings of the 58th IEEE International Conference on Decision and Control (CDC) , pages: 1315-1322, 58th IEEE International Conference on Decision and Control (CDC), December 2019 (conference)

ics

PDF [BibTex]

2019


PDF [BibTex]


A Learnable Safety Measure
A Learnable Safety Measure

Heim, S., Rohr, A. V., Trimpe, S., Badri-Spröwitz, A.

Conference on Robot Learning, November 2019 (conference) Accepted

dlg ics

Arxiv [BibTex]

Arxiv [BibTex]


Predictive Triggering for Distributed Control of Resource Constrained Multi-agent Systems
Predictive Triggering for Distributed Control of Resource Constrained Multi-agent Systems

Mastrangelo, J. M., Baumann, D., Trimpe, S.

In Proceedings of the 8th IFAC Workshop on Distributed Estimation and Control in Networked Systems, pages: 79-84, 8th IFAC Workshop on Distributed Estimation and Control in Networked Systems (NecSys), September 2019 (inproceedings)

ics

arXiv PDF DOI [BibTex]

arXiv PDF DOI [BibTex]


Event-triggered Pulse Control with Model Learning (if Necessary)
Event-triggered Pulse Control with Model Learning (if Necessary)

Baumann, D., Solowjow, F., Johansson, K. H., Trimpe, S.

In Proceedings of the American Control Conference, pages: 792-797, American Control Conference (ACC), July 2019 (inproceedings)

ics

arXiv PDF Project Page [BibTex]

arXiv PDF Project Page [BibTex]


Data-driven inference of passivity properties via Gaussian process optimization
Data-driven inference of passivity properties via Gaussian process optimization

Romer, A., Trimpe, S., Allgöwer, F.

In Proceedings of the European Control Conference, European Control Conference (ECC), June 2019 (inproceedings)

ics

PDF [BibTex]

PDF [BibTex]


Trajectory-Based Off-Policy Deep Reinforcement Learning
Trajectory-Based Off-Policy Deep Reinforcement Learning

Doerr, A., Volpp, M., Toussaint, M., Trimpe, S., Daniel, C.

In Proceedings of the International Conference on Machine Learning (ICML), International Conference on Machine Learning (ICML), June 2019 (inproceedings)

Abstract
Policy gradient methods are powerful reinforcement learning algorithms and have been demonstrated to solve many complex tasks. However, these methods are also data-inefficient, afflicted with high variance gradient estimates, and frequently get stuck in local optima. This work addresses these weaknesses by combining recent improvements in the reuse of off-policy data and exploration in parameter space with deterministic behavioral policies. The resulting objective is amenable to standard neural network optimization strategies like stochastic gradient descent or stochastic gradient Hamiltonian Monte Carlo. Incorporation of previous rollouts via importance sampling greatly improves data-efficiency, whilst stochastic optimization schemes facilitate the escape from local optima. We evaluate the proposed approach on a series of continuous control benchmark tasks. The results show that the proposed algorithm is able to successfully and reliably learn solutions using fewer system interactions than standard policy gradient methods.

ics

arXiv PDF [BibTex]

arXiv PDF [BibTex]


A Magnetically-Actuated Untethered Jellyfish-Inspired Soft Milliswimmer
A Magnetically-Actuated Untethered Jellyfish-Inspired Soft Milliswimmer

(Best Paper Award)

Ziyu Ren, T. W., Hu, W.

RSS 2019: Robotics: Science and Systems Conference, June 2019 (conference)

pi

[BibTex]

[BibTex]


Feedback Control Goes Wireless: Guaranteed Stability over Low-power Multi-hop Networks
Feedback Control Goes Wireless: Guaranteed Stability over Low-power Multi-hop Networks

(Best Paper Award)

Mager, F., Baumann, D., Jacob, R., Thiele, L., Trimpe, S., Zimmerling, M.

In Proceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Systems, pages: 97-108, 10th ACM/IEEE International Conference on Cyber-Physical Systems, April 2019 (inproceedings)

Abstract
Closing feedback loops fast and over long distances is key to emerging applications; for example, robot motion control and swarm coordination require update intervals below 100 ms. Low-power wireless is preferred for its flexibility, low cost, and small form factor, especially if the devices support multi-hop communication. Thus far, however, closed-loop control over multi-hop low-power wireless has only been demonstrated for update intervals on the order of multiple seconds. This paper presents a wireless embedded system that tames imperfections impairing control performance such as jitter or packet loss, and a control design that exploits the essential properties of this system to provably guarantee closed-loop stability for linear dynamic systems. Using experiments on a testbed with multiple cart-pole systems, we are the first to demonstrate the feasibility and to assess the performance of closed-loop control and coordination over multi-hop low-power wireless for update intervals from 20 ms to 50 ms.

ics

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]


no image
Elastic modulus affects adhesive strength of gecko-inspired synthetics in variable temperature and humidity

Mitchell, CT, Drotlef, D, Dayan, CB, Sitti, M, Stark, AY

In INTEGRATIVE AND COMPARATIVE BIOLOGY, pages: E372-E372, OXFORD UNIV PRESS INC JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA, March 2019 (inproceedings)

pi

[BibTex]

[BibTex]


Fast and Resource-Efficient Control of Wireless Cyber-Physical Systems
Fast and Resource-Efficient Control of Wireless Cyber-Physical Systems

Baumann, D.

KTH Royal Institute of Technology, Stockholm, Febuary 2019 (phdthesis)

ics

PDF [BibTex]

PDF [BibTex]


no image
Gecko-inspired composite microfibers for reversible adhesion on smooth and rough surfaces

Drotlef, D., Dayan, C., Sitti, M.

In INTEGRATIVE AND COMPARATIVE BIOLOGY, pages: E58-E58, OXFORD UNIV PRESS INC JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA, 2019 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Actively Learning Dynamical Systems with Gaussian Processes

Buisson-Fenet, M.

Mines ParisTech, PSL University, 2019 (mastersthesis)

Abstract
Predicting the behavior of complex systems is of great importance in many fields such as engineering, economics or meteorology. The evolution of such systems often follows a certain structure, which can be induced, for example from the laws of physics or of market forces. Mathematically, this structure is often captured by differential equations. The internal functional dependencies, however, are usually unknown. Hence, using machine learning approaches that recreate this structure directly from data is a promising alternative to designing physics-based models. In particular, for high dimensional systems with nonlinear effects, this can be a challenging task. Learning dynamical systems is different from the classical machine learning tasks, such as image processing, and necessitates different tools. Indeed, dynamical systems can be actuated, often by applying torques or voltages. Hence, the user has a power of decision over the system, and can drive it to certain states by going through the dynamics. Actuating this system generates data, from which a machine learning model of the dynamics can be trained. However, gathering informative data that is representative of the whole state space remains a challenging task. The question of active learning then becomes important: which control inputs should be chosen by the user so that the data generated during an experiment is informative, and enables efficient training of the dynamics model? In this context, Gaussian processes can be a useful framework for approximating system dynamics. Indeed, they perform well on small and medium sized data sets, as opposed to most other machine learning frameworks. This is particularly important considering data is often costly to generate and process, most of all when producing it involves actuating a complex physical system. Gaussian processes also yield a notion of uncertainty, which indicates how sure the model is about its predictions. In this work, we investigate in a principled way how to actively learn dynamical systems, by selecting control inputs that generate informative data. We model the system dynamics by a Gaussian process, and use information-theoretic criteria to identify control trajectories that maximize the information gain. Thus, the input space can be explored efficiently, leading to a data-efficient training of the model. We propose several methods, investigate their theoretical properties and compare them extensively in a numerical benchmark. The final method proves to be efficient at generating informative data. Thus, it yields the lowest prediction error with the same amount of samples on most benchmark systems. We propose several variants of this method, allowing the user to trade off computations with prediction accuracy, and show it is versatile enough to take additional objectives into account.

ics

[BibTex]

[BibTex]

2018


Deep Reinforcement Learning for Event-Triggered Control
Deep Reinforcement Learning for Event-Triggered Control

Baumann, D., Zhu, J., Martius, G., Trimpe, S.

In Proceedings of the 57th IEEE International Conference on Decision and Control (CDC), pages: 943-950, 57th IEEE International Conference on Decision and Control (CDC), December 2018 (inproceedings)

al ics

arXiv PDF DOI Project Page Project Page [BibTex]

2018


arXiv PDF DOI Project Page Project Page [BibTex]


Efficient Encoding of Dynamical Systems through Local Approximations
Efficient Encoding of Dynamical Systems through Local Approximations

Solowjow, F., Mehrjou, A., Schölkopf, B., Trimpe, S.

In Proceedings of the 57th IEEE International Conference on Decision and Control (CDC), pages: 6073 - 6079 , Miami, Fl, USA, December 2018 (inproceedings)

ei ics

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]


Depth Control of Underwater Robots using Sliding Modes and Gaussian Process Regression
Depth Control of Underwater Robots using Sliding Modes and Gaussian Process Regression

Lima, G. S., Bessa, W. M., Trimpe, S.

In Proceeding of the 15th Latin American Robotics Symposium, João Pessoa, Brazil, 15th Latin American Robotics Symposium, November 2018 (inproceedings)

Abstract
The development of accurate control systems for underwater robotic vehicles relies on the adequate compensation for hydrodynamic effects. In this work, a new robust control scheme is presented for remotely operated underwater vehicles. In order to meet both robustness and tracking requirements, sliding mode control is combined with Gaussian process regression. The convergence properties of the closed-loop signals are analytically proven. Numerical results confirm the stronger improved performance of the proposed control scheme.

ics

[BibTex]

[BibTex]


Gait learning for soft microrobots controlled by light fields
Gait learning for soft microrobots controlled by light fields

Rohr, A. V., Trimpe, S., Marco, A., Fischer, P., Palagi, S.

In International Conference on Intelligent Robots and Systems (IROS) 2018, pages: 6199-6206, International Conference on Intelligent Robots and Systems 2018, October 2018 (inproceedings)

Abstract
Soft microrobots based on photoresponsive materials and controlled by light fields can generate a variety of different gaits. This inherent flexibility can be exploited to maximize their locomotion performance in a given environment and used to adapt them to changing environments. However, because of the lack of accurate locomotion models, and given the intrinsic variability among microrobots, analytical control design is not possible. Common data-driven approaches, on the other hand, require running prohibitive numbers of experiments and lead to very sample-specific results. Here we propose a probabilistic learning approach for light-controlled soft microrobots based on Bayesian Optimization (BO) and Gaussian Processes (GPs). The proposed approach results in a learning scheme that is highly data-efficient, enabling gait optimization with a limited experimental budget, and robust against differences among microrobot samples. These features are obtained by designing the learning scheme through the comparison of different GP priors and BO settings on a semisynthetic data set. The developed learning scheme is validated in microrobot experiments, resulting in a 115% improvement in a microrobot’s locomotion performance with an experimental budget of only 20 tests. These encouraging results lead the way toward self-adaptive microrobotic systems based on lightcontrolled soft microrobots and probabilistic learning control.

ics pf

arXiv IEEE Xplore DOI Project Page [BibTex]

arXiv IEEE Xplore DOI Project Page [BibTex]


no image
Learning-Based Robust Model Predictive Control with State-Dependent Uncertainty

Soloperto, R., Müller, M. A., Trimpe, S., Allgöwer, F.

In Proceedings of the IFAC Conference on Nonlinear Model Predictive Control (NMPC), Madison, Wisconsin, USA, 6th IFAC Conference on Nonlinear Model Predictive Control, August 2018 (inproceedings)

ics

PDF [BibTex]

PDF [BibTex]


Probabilistic Recurrent State-Space Models
Probabilistic Recurrent State-Space Models

Doerr, A., Daniel, C., Schiegg, M., Nguyen-Tuong, D., Schaal, S., Toussaint, M., Trimpe, S.

In Proceedings of the International Conference on Machine Learning (ICML), International Conference on Machine Learning (ICML), July 2018 (inproceedings)

Abstract
State-space models (SSMs) are a highly expressive model class for learning patterns in time series data and for system identification. Deterministic versions of SSMs (e.g., LSTMs) proved extremely successful in modeling complex time-series data. Fully probabilistic SSMs, however, unfortunately often prove hard to train, even for smaller problems. To overcome this limitation, we propose a scalable initialization and training algorithm based on doubly stochastic variational inference and Gaussian processes. In the variational approximation we propose in contrast to related approaches to fully capture the latent state temporal correlations to allow for robust training.

am ics

arXiv pdf Project Page [BibTex]

arXiv pdf Project Page [BibTex]


Event-triggered Learning for Resource-efficient Networked Control
Event-triggered Learning for Resource-efficient Networked Control

Solowjow, F., Baumann, D., Garcke, J., Trimpe, S.

In Proceedings of the American Control Conference (ACC), pages: 6506 - 6512, American Control Conference, June 2018 (inproceedings)

ics

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]


Evaluating Low-Power Wireless Cyber-Physical Systems
Evaluating Low-Power Wireless Cyber-Physical Systems

Baumann, D., Mager, F., Singh, H., Zimmerling, M., Trimpe, S.

In Proceedings of the IEEE Workshop on Benchmarking Cyber-Physical Networks and Systems (CPSBench), pages: 13-18, IEEE Workshop on Benchmarking Cyber-Physical Networks and Systems (CPSBench), April 2018 (inproceedings)

ics

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]


no image
Enhanced Non-Steady Gliding Performance of the MultiMo-Bat through Optimal Airfoil Configuration and Control Strategy

Kim, H., Woodward, M. A., Sitti, M.

In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 1382-1388, 2018 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Collectives of Spinning Mobile Microrobots for Navigation and Object Manipulation at the Air-Water Interface

Wang, W., Kishore, V., Koens, L., Lauga, E., Sitti, M.

In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 1-9, 2018 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Endo-VMFuseNet: A Deep Visual-Magnetic Sensor Fusion Approach for Endoscopic Capsule Robots

Turan, M., Almalioglu, Y., Gilbert, H. B., Sari, A. E., Soylu, U., Sitti, M.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 1-7, 2018 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Endosensorfusion: Particle filtering-based multi-sensory data fusion with switching state-space model for endoscopic capsule robots

Turan, M., Almalioglu, Y., Gilbert, H., Araujo, H., Cemgil, T., Sitti, M.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 1-8, 2018 (inproceedings)

pi

[BibTex]

[BibTex]

2016


no image
Predictive and Self Triggering for Event-based State Estimation

Trimpe, S.

In Proceedings of the 55th IEEE Conference on Decision and Control (CDC), pages: 3098-3105, Las Vegas, NV, USA, December 2016 (inproceedings)

am ics

arXiv PDF DOI Project Page [BibTex]

2016


arXiv PDF DOI Project Page [BibTex]


Steering control of a water-running robot using an active tail
Steering control of a water-running robot using an active tail

Kim, H., Jeong, K., Sitti, M., Seo, T.

In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on, pages: 4945-4950, October 2016 (inproceedings)

Abstract
Many highly dynamic novel mobile robots have been developed being inspired by animals. In this study, we are inspired by a basilisk lizard's ability to run and steer on water surface for a hexapedal robot. The robot has an active tail with a circular plate, which the robot rotates to steer on water. We dynamically modeled the platform and conducted simulations and experiments on steering locomotion with a bang-bang controller. The robot can steer on water by rotating the tail, and the controlled steering locomotion is stable. The dynamic modelling approximates the robot's steering locomotion and the trends of the simulations and experiments are similar, although there are errors between the desired and actual angles. The robot's maneuverability on water can be improved through further research.

pi

DOI [BibTex]

DOI [BibTex]


Targeting of cell mockups using sperm-shaped microrobots in vitro
Targeting of cell mockups using sperm-shaped microrobots in vitro

Khalil, I. S., Tabak, A. F., Hosney, A., Klingner, A., Shalaby, M., Abdel-Kader, R. M., Serry, M., Sitti, M.

In Biomedical Robotics and Biomechatronics (BioRob), 2016 6th IEEE International Conference on, pages: 495-501, July 2016 (inproceedings)

Abstract
Sperm-shaped microrobots are controlled under the influence of weak oscillating magnetic fields (milliTesla range) to selectively target cell mockups (i.e., gas bubbles with average diameter of 200 μm). The sperm-shaped microrobots are fabricated by electrospinning using a solution of polystyrene, dimethylformamide, and iron oxide nanoparticles. These nanoparticles are concentrated within the head of the microrobot, and hence enable directional control along external magnetic fields. The magnetic dipole moment of the microrobot is characterized (using the flip-time technique) to be 1.4×10-11 A.m2, at magnetic field of 28 mT. In addition, the morphology of the microrobot is characterized using Scanning Electron Microscopy images. The characterized parameters and morphology are used in the simulation of the locomotion mechanism of the microrobot to prove that its motion depends on breaking the time-reversal symmetry, rather than pulling with the magnetic field gradient. We experimentally demonstrate that the microrobot can controllably follow S-shaped, U-shaped, and square paths, and selectively target the cell mockups using image guidance and under the influence of the oscillating magnetic fields.

pi

DOI [BibTex]

DOI [BibTex]


Analysis of the magnetic torque on a tilted permanent magnet for drug delivery in capsule robots
Analysis of the magnetic torque on a tilted permanent magnet for drug delivery in capsule robots

Munoz, F., Alici, G., Zhou, H., Li, W., Sitti, M.

In Advanced Intelligent Mechatronics (AIM), 2016 IEEE International Conference on, pages: 1386-1391, July 2016 (inproceedings)

Abstract
In this paper, we present the analysis of the torque transmitted to a tilted permanent magnet that is to be embedded in a capsule robot to achieve targeted drug delivery. This analysis is carried out by using an analytical model and experimental results for a small cubic permanent magnet that is driven by an external magnetic system made of an array of arc-shaped permanent magnets (ASMs). Our experimental results, which are in agreement with the analytical results, show that the cubic permanent magnet can safely be actuated for inclinations lower than 75° without having to make positional adjustments in the external magnetic system. We have found that with further inclinations, the cubic permanent magnet to be embedded in a drug delivery mechanism may stall. When it stalls, the external magnetic system's position and orientation would have to be adjusted to actuate the cubic permanent magnet and the drug release mechanism. This analysis of the transmitted torque is helpful for the development of real-time control strategies for magnetically articulated devices.

pi

DOI [BibTex]

DOI [BibTex]


Robust Gaussian Filtering using a Pseudo Measurement
Robust Gaussian Filtering using a Pseudo Measurement

Wüthrich, M., Garcia Cifuentes, C., Trimpe, S., Meier, F., Bohg, J., Issac, J., Schaal, S.

In Proceedings of the American Control Conference (ACC), Boston, MA, USA, July 2016 (inproceedings)

Abstract
Most widely-used state estimation algorithms, such as the Extended Kalman Filter and the Unscented Kalman Filter, belong to the family of Gaussian Filters (GF). Unfortunately, GFs fail if the measurement process is modelled by a fat-tailed distribution. This is a severe limitation, because thin-tailed measurement models, such as the analytically-convenient and therefore widely-used Gaussian distribution, are sensitive to outliers. In this paper, we show that mapping the measurements into a specific feature space enables any existing GF algorithm to work with fat-tailed measurement models. We find a feature function which is optimal under certain conditions. Simulation results show that the proposed method allows for robust filtering in both linear and nonlinear systems with measurements contaminated by fat-tailed noise.

am ics

Web link (url) DOI Project Page [BibTex]

Web link (url) DOI Project Page [BibTex]


Automatic LQR Tuning Based on Gaussian Process Global Optimization
Automatic LQR Tuning Based on Gaussian Process Global Optimization

Marco, A., Hennig, P., Bohg, J., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 270-277, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
This paper proposes an automatic controller tuning framework based on linear optimal control combined with Bayesian optimization. With this framework, an initial set of controller gains is automatically improved according to a pre-defined performance objective evaluated from experimental data. The underlying Bayesian optimization algorithm is Entropy Search, which represents the latent objective as a Gaussian process and constructs an explicit belief over the location of the objective minimum. This is used to maximize the information gain from each experimental evaluation. Thus, this framework shall yield improved controllers with fewer evaluations compared to alternative approaches. A seven-degree- of-freedom robot arm balancing an inverted pole is used as the experimental demonstrator. Results of a two- and four- dimensional tuning problems highlight the method’s potential for automatic controller tuning on robotic platforms.

am ics pn

Video - Automatic LQR Tuning Based on Gaussian Process Global Optimization - ICRA 2016 Video - Automatic Controller Tuning on a Two-legged Robot PDF DOI Project Page [BibTex]

Video - Automatic LQR Tuning Based on Gaussian Process Global Optimization - ICRA 2016 Video - Automatic Controller Tuning on a Two-legged Robot PDF DOI Project Page [BibTex]


Depth-based Object Tracking Using a Robust Gaussian Filter
Depth-based Object Tracking Using a Robust Gaussian Filter

Issac, J., Wüthrich, M., Garcia Cifuentes, C., Bohg, J., Trimpe, S., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2016, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
We consider the problem of model-based 3D- tracking of objects given dense depth images as input. Two difficulties preclude the application of a standard Gaussian filter to this problem. First of all, depth sensors are characterized by fat-tailed measurement noise. To address this issue, we show how a recently published robustification method for Gaussian filters can be applied to the problem at hand. Thereby, we avoid using heuristic outlier detection methods that simply reject measurements if they do not match the model. Secondly, the computational cost of the standard Gaussian filter is prohibitive due to the high-dimensional measurement, i.e. the depth image. To address this problem, we propose an approximation to reduce the computational complexity of the filter. In quantitative experiments on real data we show how our method clearly outperforms the standard Gaussian filter. Furthermore, we compare its performance to a particle-filter-based tracking method, and observe comparable computational efficiency and improved accuracy and smoothness of the estimates.

am ics

Video Bayesian Object Tracking Library Bayesian Filtering Framework Object Tracking Dataset link (url) DOI Project Page [BibTex]

Video Bayesian Object Tracking Library Bayesian Filtering Framework Object Tracking Dataset link (url) DOI Project Page [BibTex]


Sperm-shaped magnetic microrobots: Fabrication using electrospinning, modeling, and characterization
Sperm-shaped magnetic microrobots: Fabrication using electrospinning, modeling, and characterization

Khalil, I. S., Tabak, A. F., Hosney, A., Mohamed, A., Klingner, A., Ghoneima, M., Sitti, M.

In Robotics and Automation (ICRA), 2016 IEEE International Conference on, pages: 1939-1944, May 2016 (inproceedings)

Abstract
We use electrospinning to fabricate sperm-shaped magnetic microrobots with a range of diameters from 50 μm to 500 μm. The variables of the electrospinning operation (voltage, concentration of the solution, dynamic viscosity, and distance between the syringe needle and collector) to achieve beading effect are determined. This beading effect allows us to fabricate microrobots with similar morphology to that of sperm cells. The bead and the ultra-fine fiber resemble the morphology of the head and tail of the sperm cell, respectively. We incorporate iron oxide nanoparticles to the head of the sperm-shaped microrobot to provide a magnetic dipole moment. This dipole enables directional control under the influence of external magnetic fields. We also apply weak (less than 2 mT) oscillating magnetic fields to exert a magnetic torque on the magnetic head, and generate planar flagellar waves and flagellated swim. The average speed of the sperm-shaped microrobot is calculated to be 0.5 body lengths per second and 1 body lengths per second at frequencies of 5 Hz and 10 Hz, respectively. We also develop a model of the microrobot using elastohydrodynamics approach and Timoshenko-Rayleigh beam theory, and find good agreement with the experimental results.

pi

DOI [BibTex]

DOI [BibTex]


no image
Communication Rate Analysis for Event-based State Estimation

(Best student paper finalist)

Ebner, S., Trimpe, S.

In Proceedings of the 13th International Workshop on Discrete Event Systems, May 2016 (inproceedings)

am ics

PDF DOI [BibTex]

PDF DOI [BibTex]

2012


no image
Topological optimization for continuum compliant mechanisms via morphological evolution of traditional mechanisms

Lum, GZ, Yeo, SH, Yang, GL, Teo, TJ, Sitti, M

In 4th International Conference on Computational Methods, pages: 8, 2012 (inproceedings)

pi

[BibTex]

2012


[BibTex]


no image
Flapping Wings with DC-Motors via Direct, Elastic Transmissions

Azhar, M., Campolo, D., Lau, G., Sitti, M.

In Proceedings of International Conference on Intelligent Unmanned Systems, 8, 2012 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Investigation of bioinspired gecko fibers to improve adhesion of HeartLander surgical robot

Tortora, G., Glass, P., Wood, N., Aksak, B., Menciassi, A., Sitti, M., Riviere, C.

In Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, pages: 908-911, 2012 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Magnetic hysteresis for multi-state addressable magnetic microrobotic control

Diller, E., Miyashita, S., Sitti, M.

In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pages: 2325-2331, 2012 (inproceedings)

pi

[BibTex]

[BibTex]

2001


no image
Survey of nanomanipulation systems

Sitti, M.

In Nanotechnology, 2001. IEEE-NANO 2001. Proceedings of the 2001 1st IEEE Conference on, pages: 75-80, 2001 (inproceedings)

pi

[BibTex]

2001


[BibTex]


no image
Nanotribological characterization system by AFM based controlled pushing

Sitti, M.

In Nanotechnology, 2001. IEEE-NANO 2001. Proceedings of the 2001 1st IEEE Conference on, pages: 99-104, 2001 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Towards flapping wing control for a micromechanical flying insect

Yan, J., Wood, R. J., Avadhanula, S., Sitti, M., Fearing, R. S.

In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, 4, pages: 3901-3908, 2001 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Man-machine interface for micro/nano manipulation with an afm probe

Aruk, B., Hashimoto, H., Sitti, M.

In Nanotechnology, 2001. IEEE-NANO 2001. Proceedings of the 2001 1st IEEE Conference on, pages: 151-156, 2001 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Development of PZT and PZN-PT based unimorph actuators for micromechanical flapping mechanisms

Sitti, M., Campolo, D., Yan, J., Fearing, R. S.

In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, 4, pages: 3839-3846, 2001 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Thorax Design and Wing Control for a Micromechanical Flying Insect

Yan, J, Ayadhanula, S, Sitti, M, Wood, RJ, Fearing, RS

In PROCEEDINGS OF THE ANNUAL ALLERTON CONFERENCE ON COMMUNICATION CONTROL AND COMPUTING, 39(2):952-961, 2001 (inproceedings)

pi

[BibTex]

[BibTex]


no image
PZT actuated four-bar mechanism with two flexible links for micromechanical flying insect thorax

Sitti, M.

In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, 4, pages: 3893-3900, 2001 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Development of a scaled teleoperation system for nano scale interaction and manipulation

Sitti, M., Aruk, B., Shintani, H., Hashimoto, H.

In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, 1, pages: 860-867, 2001 (inproceedings)

pi

[BibTex]

[BibTex]

1995


no image
Visual tracking for moving multiple objects: an integration of vision and control

Sitti, M, Bozma, I, Denker, A

In Industrial Electronics, 1995. ISIE’95., Proceedings of the IEEE International Symposium on, 2, pages: 535-540, 1995 (inproceedings)

pi

[BibTex]

1995


[BibTex]