Header logo is


2019


Soft-magnetic coatings as possible sensors for magnetic imaging of superconductors
Soft-magnetic coatings as possible sensors for magnetic imaging of superconductors

Ionescu, A., Simmendinger, J., Bihler, M., Miksch, C., Fischer, P., Soltan, S., Schütz, G., Albrecht, J.

Supercond. Sci. and Tech., 33, pages: 015002, IOP, December 2019 (article)

Abstract
Magnetic imaging of superconductors typically requires a soft-magnetic material placed on top of the superconductor to probe local magnetic fields. For reasonable results the influence of the magnet onto the superconductor has to be small. Thin YBCO films with soft-magnetic coatings are investigated using SQUID magnetometry. Detailed measurements of the magnetic moment as a function of temperature, magnetic field and time have been performed for different heterostructures. It is found that the modification of the superconducting transport in these heterostructures strongly depends on the magnetic and structural properties of the soft-magnetic material. This effect is especially pronounced for an inhomogeneous coating consisting of ferromagnetic nanoparticles.

pf mms

link (url) DOI [BibTex]

2019


link (url) DOI [BibTex]


no image
Dynamics of beneficial epidemics

Berdahl, A., Brelsford, C., De Bacco, C., Dumas, M., Ferdinand, V., Grochow, J. A., nt Hébert-Dufresne, L., Kallus, Y., Kempes, C. P., Kolchinsky, A., Larremore, D. B., Libby, E., Power, E. A., A., S. C., Tracey, B. D.

Scientific Reports, 9, pages: 15093, October 2019 (article)

pio

DOI [BibTex]

DOI [BibTex]


no image
Convolutional neural networks: A magic bullet for gravitational-wave detection?

Gebhard, T., Kilbertus, N., Harry, I., Schölkopf, B.

Physical Review D, 100(6):063015, American Physical Society, September 2019 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Data scarcity, robustness and extreme multi-label classification

Babbar, R., Schölkopf, B.

Machine Learning, 108(8):1329-1351, September 2019, Special Issue of the ECML PKDD 2019 Journal Track (article)

ei

DOI [BibTex]

DOI [BibTex]


Superior Magnetic Performance in FePt L1_0 Nanomaterials
Superior Magnetic Performance in FePt L1_0 Nanomaterials

Son, K., Ryu, G. H., Jeong, H., Fink, L., Merz, M., Nagel, P., Schuppler, S., Richter, G., Goering, E., Schütz, G.

Small, 15(1902353), July 2019 (article)

Abstract
The discovery of the high maximum energy product of 59 MGOe for NdFeB magnets is a breakthrough in the development of permanent magnets with a tremendous impact in many fields of technology. This value is still the world record, for 40 years. This work reports on a reliable and robust route to realize nearly perfectly ordered L1_0-phase FePt nanoparticles, leading to an unprecedented energy product of 80 MGOe at room temperature. Furthermore, with a 3 nm Au coverage, the magnetic polarization of these nanomagnets can be enhanced by 25% exceeding 1.8 T. This exceptional magnetization and anisotropy is confirmed by using multiple imaging and spectroscopic methods, which reveal highly consistent results. Due to the unprecedented huge energy product, this material can be envisaged as a new advanced basic magnetic component in modern micro and nanosized devices.

pf mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
SPINDLE: End-to-end learning from EEG/EMG to extrapolate animal sleep scoring across experimental settings, labs and species

Miladinovic, D., Muheim, C., Bauer, S., Spinnler, A., Noain, D., Bandarabadi, M., Gallusser, B., Krummenacher, G., Baumann, C., Adamantidis, A., Brown, S. A., Buhmann, J. M.

PLOS Computational Biology, 15(4):1-30, Public Library of Science, April 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Optimal Stair Climbing Pattern Generation for Humanoids Using Virtual Slope and Distributed Mass Model

Ahmadreza, S., Aghil, Y., Majid, K., Saeed, M., Saeid, M. S.

Journal of Intelligent and Robotics Systems, 94:1, pages: 43-59, April 2019 (article)

mg

DOI [BibTex]

DOI [BibTex]


no image
Extracting the dynamic magnetic contrast in time-resolved X-ray transmission microscopy

Schaffers, T., Feggeler, T., Pile, S., Meckenstock, R., Buchner, M., Spoddig, D., Ney, V., Farle, M., Wende, H., Wintz, S., Weigand, M., Ohldag, H., Ollefs, K, Ney, A.

{Nanomaterials}, 9(7), MDPI, Basel, Schweiz, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Generation of switchable singular beams with dynamic metasurfaces

Yu, P., Li, J., Li, X., Schütz, G., Hirscher, M., Zhang, S., Liu, N.

{ACS Nano}, 13(6):7100-7106, American Chemical Society, Washington, DC, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
A 32-channel multi-coil setup optimized for human brain shimming at 9.4T

Aghaeifar, A., Zhou, J., Heule, R., Tabibian, B., Schölkopf, B., Jia, F., Zaitsev, M., Scheffler, K.

Magnetic Resonance in Medicine, 2019, (Early View) (article)

ei

DOI [BibTex]

DOI [BibTex]


Multidimensional Contrast Limited Adaptive Histogram Equalization
Multidimensional Contrast Limited Adaptive Histogram Equalization

Stimper, V., Bauer, S., Ernstorfer, R., Schölkopf, B., Xian, R. P.

IEEE Access, 7, pages: 165437-165447, 2019 (article)

ei

arXiv link (url) DOI [BibTex]

arXiv link (url) DOI [BibTex]


no image
Piezo-electrical control of gyration dynamics of magnetic vortices

Filianina, M., Baldrati, L., Hajiri, T., Litzius, K., Foerster, M., Aballe, L., Kläui, M.

{Applied Physics Letters}, 115(6), American Institute of Physics, Melville, NY, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Barely porous organic cages for hydrogen isotrope separation

Liu, M., Zhang, L., Little, M. A., Kapil, V., Ceriotti, M., Yang, S., Ding, L., Holden, D. L., Balderas-Xicohténcatl, R., He, D., Clowes, R., Chong, S. Y., Schütz, G., Chen, L., Hirscher, M., Cooper, A. I.

{Science}, 366(6465):613-620, American Association for the Advancement of Science, Washington, D.C., 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetically induced anisotropy of flux penetration into strong-pinning superconductor/ferromagnet bilayers

Simmendinger, J., Hänisch, J., Bihler, M., Ionescu, A. M., Weigand, M., Sieger, M., Hühne, R., Rijckaert, H., van Driessche, I., Schütz, G., Albrecht, J.

{New Journal of Physics}, 21, IOP Publishing, Bristol, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
X-ray Optics Fabrication Using Unorthodox Approaches

Sanli, U., Baluktsian, M., Ceylan, H., Sitti, M., Weigand, M., Schütz, G., Keskinbora, K.

Bulletin of the American Physical Society, APS, 2019 (article)

mms pi

[BibTex]

[BibTex]


{Direct observation of coherent magnons with suboptical wavelengths in a single-crystalline ferrimagnetic insulator}
Direct observation of coherent magnons with suboptical wavelengths in a single-crystalline ferrimagnetic insulator

Förster, J., Gräfe, J., Bailey, J., Finizio, S., Träger, N., Groß, F., Mayr, S., Stoll, H., Dubs, C., Surzhenko, O., Liebing, N., Woltersdorf, G., Raabe, J., Weigand, M., Schütz, G., Wintz, S.

{Physical Review B}, 100(21), American Physical Society, Woodbury, NY, 2019 (article)

Abstract
Spin-wave dynamics were studied in an extended thin film of single-crystalline yttrium iron garnet using time-resolved scanning transmission x-ray microscopy. A combination of mechanical grinding and focused ion beam milling has been utilized to achieve a soft x-ray transparent thickness of the underlying bulk gadolinium gallium garnet substrate. Damon-Eshbach type spin waves down to about 100 nm wavelength have been directly imaged in real space for varying frequencies and external magnetic fields. The dispersion relation extracted from the experimental data agreed well with theoretical predictions. A significant influence of the ion milling process on the local magnetic properties was not detected.

mms

DOI [BibTex]

DOI [BibTex]


{Nanoscale detection of spin wave deflection angles in permalloy}
Nanoscale detection of spin wave deflection angles in permalloy

Gross, F., Träger, N., Förster, J., Weigand, M., Schütz, G., Gräfe, J.

{Applied Physics Letters}, 114(1), American Institute of Physics, Melville, NY, 2019 (article)

Abstract
Magnonics is a potential candidate for beyond CMOS and neuromorphic computing technologies with advanced phase encoded logic. However, nanoscale imaging of spin waves with full phase and magnetization amplitude information is a challenge. We show a generalized scanning transmission x-ray microscopy platform to get a complete understanding of spin waves, including the k-vector, phase, and absolute magnetization deflection angle. As an example, this is demonstrated using a 50 nm thin permalloy film where we find a maximum deflection angle of 1.5° and good agreement with the k-vector dispersion previously reported in the literature. With a spatial resolution approximately ten times better than any other methods for spin wave imaging, x-ray microscopy opens a vast range of possibilities for the observation of spin waves and various magnetic structures.

mms

DOI [BibTex]

DOI [BibTex]


{gFORC: A graphics processing unit accelerated first-order reversal-curve calculator}
gFORC: A graphics processing unit accelerated first-order reversal-curve calculator

Groß, F., Martínez-García, J. C., Ilse, S. E., Schütz, G., Goering, E., Rivas, M., Gräfe, J.

{Journal of Applied Physics}, 126(16), AIP Publishing, New York, NY, 2019 (article)

Abstract
First-order reversal-curves have proven to be an indispensable characterization tool for physics as well as for geology. However, the conventional evaluation algorithm requires a lot of computational effort for a comparable easy task to overcome measurement noise. In this work, we present a new evaluation approach, which exploits the diversity of Fourier space to not only speed up the calculation by a factor of 1000 but also move away from the conventional smoothing factor toward real field resolution. By comparing the baseline resolution of the new and the old algorithm, we are able to deduce an analytical equation that converts the smoothing factor into field resolution, making the old and new algorithm comparable. We find excellent agreement not only for various systems of increasing complexity but also over a large range of smoothing factors. The achieved speedup enables us to calculate a large number of first-order reversal-curve diagrams with increasing smoothing factor allowing for an autocorrelation approach to find a hard criterion for the optimum smoothing factor. This previously computational prohibitive evaluation of first-order reversal-curves solves the problem of over- and undersmoothing by increasing general readability and preventing information destruction.

mms

DOI [BibTex]

DOI [BibTex]


no image
TD-regularized actor-critic methods

Parisi, S., Tangkaratt, V., Peters, J., Khan, M. E.

Machine Learning, 108(8):1467-1501, (Editors: Karsten Borgwardt, Po-Ling Loh, Evimaria Terzi, and Antti Ukkonen), 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
A Robustness Analysis of Inverse Optimal Control of Bipedal Walking

Rebula, J. R., Schaal, S., Finley, J., Righetti, L.

IEEE Robotics and Automation Letters, 4(4):4531-4538, 2019 (article)

mg

DOI [BibTex]

DOI [BibTex]


no image
Probabilistic solutions to ordinary differential equations as nonlinear Bayesian filtering: a new perspective

Tronarp, F., Kersting, H., Särkkä, S. H. P.

Statistics and Computing, 29(6):1297-1315, 2019 (article)

ei pn

DOI [BibTex]

DOI [BibTex]


Learning to Control Highly Accelerated Ballistic Movements on Muscular Robots
Learning to Control Highly Accelerated Ballistic Movements on Muscular Robots

Büchler, D., Calandra, R., Peters, J.

2019 (article) Submitted

Abstract
High-speed and high-acceleration movements are inherently hard to control. Applying learning to the control of such motions on anthropomorphic robot arms can improve the accuracy of the control but might damage the system. The inherent exploration of learning approaches can lead to instabilities and the robot reaching joint limits at high speeds. Having hardware that enables safe exploration of high-speed and high-acceleration movements is therefore desirable. To address this issue, we propose to use robots actuated by Pneumatic Artificial Muscles (PAMs). In this paper, we present a four degrees of freedom (DoFs) robot arm that reaches high joint angle accelerations of up to 28000 °/s^2 while avoiding dangerous joint limits thanks to the antagonistic actuation and limits on the air pressure ranges. With this robot arm, we are able to tune control parameters using Bayesian optimization directly on the hardware without additional safety considerations. The achieved tracking performance on a fast trajectory exceeds previous results on comparable PAM-driven robots. We also show that our system can be controlled well on slow trajectories with PID controllers due to careful construction considerations such as minimal bending of cables, lightweight kinematics and minimal contact between PAMs and PAMs with the links. Finally, we propose a novel technique to control the the co-contraction of antagonistic muscle pairs. Experimental results illustrate that choosing the optimal co-contraction level is vital to reach better tracking performance. Through the use of PAM-driven robots and learning, we do a small step towards the future development of robots capable of more human-like motions.

ei

Arxiv Video [BibTex]


no image
Coordinated molecule-modulated magnetic phase with metamagnetism in metal-organic frameworks

Son, K., Kim, J. Y., Schütz, G., Kang, S. G., Moon, H. R., Oh, H.

{Inorganic Chemistry}, 58(14):8895-8899, American Chemical Society, Washington, DC, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Scaling of intrinsic domain wall magnetoresistance with confinement in electromigrated nanocontacts

Reeve, R. M., Loescher, A., Kazemi, H., Dupé, B., Mawass, M., Winkler, T., Schönke, D., Miao, J., Litzius, K., Sedlmayr, N., Schneider, I., Sinova, J., Eggert, S., Kläui, M.

{Physical Review B}, 99(21), American Physical Society, Woodbury, NY, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


{Coherent excitation of heterosymmetric spin waves with ultrashort wavelengths}
Coherent excitation of heterosymmetric spin waves with ultrashort wavelengths

Dieterle, G., Förster, J., Stoll, H., Semisalova, A. S., Finizio, S., Gangwar, A., Weigand, M., Noske, M., Fähnle, M., Bykova, I., Gräfe, J., Bozhko, D. A., Musiienko-Shmarova, H. Y., Tiberkevich, V., Slavin, A. N., Back, C. H., Raabe, J., Schütz, G., Wintz, S.

{Physical Review Letters}, 122(11), American Physical Society, Woodbury, N.Y., 2019 (article)

Abstract
In the emerging field of magnonics, spin waves are foreseen as signal carriers for future spintronic information processing and communication devices, owing to both the very low power losses and a high device miniaturization potential predicted for short-wavelength spin waves. Yet, the efficient excitation and controlled propagation of nanoscale spin waves remains a severe challenge. Here, we report the observation of high-amplitude, ultrashort dipole-exchange spin waves (down to 80 nm wavelength at 10 GHz frequency) in a ferromagnetic single layer system, coherently excited by the driven dynamics of a spin vortex core. We used time-resolved x-ray microscopy to directly image such propagating spin waves and their excitation over a wide range of frequencies. By further analysis, we found that these waves exhibit a heterosymmetric mode profile, involving regions with anti-Larmor precession sense and purely linear magnetic oscillation. In particular, this mode profile consists of dynamic vortices with laterally alternating helicity, leading to a partial magnetic flux closure over the film thickness, which is explained by a strong and unexpected mode hybridization. This spin-wave phenomenon observed is a general effect inherent to the dynamics of sufficiently thick ferromagnetic single layer films, independent of the specific excitation method employed.

mms

DOI [BibTex]

DOI [BibTex]


Reprogrammability and Scalability of Magnonic Fibonacci Quasicrystals
Reprogrammability and Scalability of Magnonic Fibonacci Quasicrystals

Lisiecki, F., Rychły, J., Kuświk, P., Głowiński, H., Kłos, J. W., Groß, F., Bykova, I., Weigand, M., Zelent, M., Goering, E. J., Schütz, G., Gubbiotti, G., Krawczyk, M., Stobiecki, F., Dubowik, J., Gräfe, J.

Physical Review Applied, 11, pages: 054003, 2019 (article)

Abstract
Magnonic crystals are systems that can be used to design and tune the dynamic properties of magnetization. Here, we focus on one-dimensional Fibonacci magnonic quasicrystals. We confirm the existence of collective spin waves propagating through the structure as well as dispersionless modes; the reprogammability of the resonance frequencies, dependent on the magnetization order; and dynamic spin-wave interactions. With the fundamental understanding of these properties, we lay a foundation for the scalable and advanced design of spin-wave band structures for spintronic, microwave, and magnonic applications.

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Robustifying Independent Component Analysis by Adjusting for Group-Wise Stationary Noise

Pfister*, N., Weichwald*, S., Bühlmann, P., Schölkopf, B.

Journal of Machine Learning Research, 20(147):1-50, 2019, *equal contribution (article)

ei

ArXiv Code Project page PDF link (url) Project Page Project Page [BibTex]

ArXiv Code Project page PDF link (url) Project Page Project Page [BibTex]


no image
Enhancing Human Learning via Spaced Repetition Optimization

Tabibian, B., Upadhyay, U., De, A., Zarezade, A., Schölkopf, B., Gomez Rodriguez, M.

Proceedings of the National Academy of Sciences, 116(10):3988-3993, National Academy of Sciences, 2019 (article)

ei

link (url) DOI Project Page Project Page [BibTex]

link (url) DOI Project Page Project Page [BibTex]


no image
Entropic Regularization of Markov Decision Processes

Belousov, B., Peters, J.

Entropy, 21(7):674, 2019 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Searchers adjust their eye-movement dynamics to target characteristics in natural scenes

Rothkegel, L., Schütt, H., Trukenbrod, H., Wichmann, F. A., Engbert, R.

Scientific Reports, 9(1635), 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Spatial statistics for gaze patterns in scene viewing: Effects of repeated viewing

Trukenbrod, H. A., Barthelmé, S., Wichmann, F. A., Engbert, R.

Journal of Vision, 19(6):19, 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Rigid vs compliant contact: an experimental study on biped walking

Khadiv, M., Moosavian, S. A. A., Yousefi-Koma, A., Sadedel, M., Ehsani-Seresht, A., Mansouri, S.

Multibody System Dynamics, 45(4):379-401, 2019 (article)

mg

DOI [BibTex]

DOI [BibTex]


no image
Magnetic field dependence of magnetotransport properties of MgB2/CrO2 bilayer thin films

Alzayed, N. S., Shahabuddin, M., Ramey, S. M., Soltan, S.

{Journal of Superconductivity and Novel Magnetism}, 32(8):2447-2455, Springer Science + Business Media B.V., New York, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Structural and magnetic properties of FePt-Tb alloy thin films

Schmidt, N. Y., Laureti, S., Radu, F., Ryll, H., Luo, C., d\textquotesingleAcapito, F., Tripathi, S., Goering, E., Weller, D., Albrecht, M.

{Physical Review B}, 100(6), American Physical Society, Woodbury, NY, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Tunable perpendicular exchange bias in oxide heterostructures

Kim, G., Khaydukov, Y., Bluschke, M., Suyolcu, Y. E., Christiani, G., Son, K., Dietl, C., Keller, T., Weschke, E., van Aken, P. A., Logvenov, G., Keimer, B.

{Physical Review Materials}, 3(8), American Physical Society, College Park, MD, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Quantum mean embedding of probability distributions

Kübler, J. M., Muandet, K., Schölkopf, B.

Physical Review Research, 1(3):033159, American Physical Society, 2019 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Magnons in a Quasicrystal: Propagation, Extinction, and Localization of Spin Waves in Fibonacci Structures
Magnons in a Quasicrystal: Propagation, Extinction, and Localization of Spin Waves in Fibonacci Structures

Lisiecki, F., Rychły, J., Kuświk, P., Głowiński, H., Kłos, J. W., Groß, F., Träger, N., Bykova, I., Weigand, M., Zelent, M., Goering, E. J., Schütz, G., Krawczyk, M., Stobiecki, F., Dubowik, J., Gräfe, J.

Physical Review Applied, 11, pages: 054061, 2019 (article)

Abstract
Magnonic quasicrystals exceed the possibilities of spin-wave (SW) manipulation offered by regular magnonic crystals, because of their more complex SW spectra with fractal characteristics. Here, we report the direct x-ray microscopic observation of propagating SWs in a magnonic quasicrystal, consisting of dipolar coupled permalloy nanowires arranged in a one-dimensional Fibonacci sequence. SWs from the first and second band as well as evanescent waves from the band gap between them are imaged. Moreover, additional mini band gaps in the spectrum are demonstrated, directly indicating an influence of the quasiperiodicity of the system. Finally, the localization of SW modes within the Fibonacci crystal is shown. The experimental results are interpreted using numerical calculations and we deduce a simple model to estimate the frequency position of the magnonic gaps in quasiperiodic structures. The demonstrated features of SW spectra in one-dimensional magnonic quasicrystals allow utilizing this class of metamaterials for magnonics and make them an ideal basis for future applications.

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


{Nanoscale X-ray imaging of spin dynamics in Yttrium iron garnet}
Nanoscale X-ray imaging of spin dynamics in Yttrium iron garnet

Förster, J., Wintz, S., Bailey, J., Finizio, S., Josten, E., Meertens, D., Dubs, C., Bozhko, D. A., Stoll, H., Dieterle, G., Traeger, N., Raabe, J., Slavin, A. N., Weigand, M., Gräfe, J., Schütz, G.

Journal of Applied Physics, 126, 2019 (article)

Abstract
Time-resolved scanning transmission x-ray microscopy has been used for the direct imaging of spin-wave dynamics in a thin film yttrium iron garnet (YIG) with sub-200 nm spatial resolution. Application of this x-ray transmission technique to single-crystalline garnet films was achieved by extracting a lamella (13×5×0.185 μm3) of the liquid phase epitaxy grown YIG thin film out of a gadolinium gallium garnet substrate. Spin waves in the sample were measured along the Damon-Eshbach and backward volume directions of propagation at gigahertz frequencies and with wavelengths in a range between 200 nm and 10 μm. The results were compared to theoretical models. Here, the widely used approximate dispersion equation for dipole-exchange spin waves proved to be insufficient for describing the observed Damon-Eshbach type modes. For achieving an accurate description, we made use of the full analytical theory taking mode-hybridization effects into account.

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Tailoring of an unusual oxidation state in a lanthanum tantalum(IV) oxynitride via precursor microstructure design

Bubeck, C., Widenmeyer, M., Richter, G., Coduri, M., Goering, E., Yoon, S., Weidenkaff, A.

{Communications Chemistry}, 2, Springer Nature, London, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Inferring causation from time series with perspectives in Earth system sciences

Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E., Glymour, C., Kretschmer, M., Mahecha, M., Munoz-Mari, J., van Nes, E., Peters, J., Quax, R., Reichstein, M., Scheffer, M., Schölkopf, B., Spirtes, P., Sugihara, G., Sun, J., Zhang, K., Zscheischler, J.

Nature Communications, 10(2553), 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Analysis of cause-effect inference by comparing regression errors

Blöbaum, P., Janzing, D., Washio, T., Shimizu, S., Schölkopf, B.

PeerJ Computer Science, 5, pages: e169, 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Learning Intention Aware Online Adaptation of Movement Primitives

Koert, D., Pajarinen, J., Schotschneider, A., Trick, S., Rothkopf, C., Peters, J.

IEEE Robotics and Automation Letters, 4(4):3719-3726, 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Spread-spectrum magnetic resonance imaging

Scheffler, K., Loktyushin, A., Bause, J., Aghaeifar, A., Steffen, T., Schölkopf, B.

Magnetic Resonance in Medicine, 82(3):877-885, 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
How Cognitive Models of Human Body Experience Might Push Robotics

Schürmann, T., Mohler, B. J., Peters, J., Beckerle, P.

Frontiers in Neurorobotics, 13(14), 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
An international laboratory comparison study of volumetric and gravimetric hydrogen adsorption measurements

Hurst, K. E., Gennett, T., Adams, J., Allendorf, M. D., Balderas-Xicohténcatl, R., Bielewski, M., Edwards, B., Espinal, L., Fultz, B., Hirscher, M., Hudson, M. S. L., Hulvey, Z., Latroche, M., Liu, D., Kapelewski, M., Napolitano, E., Perry, Z. T., Purewal, J., Stavila, V., Veenstra, M., White, J. L., Yuan, Y., Zhou, H., Zlotea, C., Parilla, P.

{ChemPhysChem}, 20(15):1997-2009, Wiley-VCH, Weinheim, Germany, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Superior magnetic performance in FePt L10 nanomaterials

Son, K., Ryu, G. H., Jeong, H., Fink, L., Merz, M., Nagel, P., Schuppler, S., Richter, G., Goering, E., Schütz, G.

{Small}, 15(34), Wiley, Weinheim, Germany, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Niobium near-surface composition during nitrogen infusion relevant for superconducting radio-frequency cavities

Semione, G. D. L., Dangwal Pandey, A., Tober, S., Pfrommer, J., Poulain, A., Drnec, J., Schütz, G., Keller, T. F., Noei, H., Vonk, V., Foster, B., Stierle, A.

{Physical Review Accelerators and Beams}, 22(10), American Physical Society, Ridge, NY, USA, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


{Vizualizing nanoscale spin waves using MAXYMUS}
Vizualizing nanoscale spin waves using MAXYMUS

Gräfe, J., Weigand, M., Van Waeyenberge, B., Gangwar, A., Groß, F., Lisiecki, F., Rychly, J., Stoll, H., Träger, N., Förster, J., Stobiecki, F., Dubowik, J., Klos, H., Krwaczyk, M., Back, C. H., Goering, E. J., Schütz, G.

{Proceedings of SPIE}, 11090, SPIE, Bellingham, Washington, 2019 (article)

Abstract
Magnonics research, i.e. the manipulation of spin waves for information processing, is a topic of intense research interest in the past years. FMR, BLS and MOKE measurements lead to tremendous success and advancement of the field. However, these methods are limited in their spatial resolution. X-ray microscopy opens up a way to push to spatial resolutions below 100 nm. Here, we discuss the methodology of STXM for pump-probe data acquisition with single photon counting and arbitrary excitation patterns. Furthermore, we showcase these capabilities using two magnonic crystals as examples: an antidot lattice and a Fibonacci quasicrystal.

mms

DOI [BibTex]

DOI [BibTex]


{Interpreting first-order reversal curves beyond the Preisach model: An experimental permalloy microarray investigation}
Interpreting first-order reversal curves beyond the Preisach model: An experimental permalloy microarray investigation

Groß, F., Ilse, S. E., Schütz, G., Gräfe, J., Goering, E.

{Physical Review B}, 99(6), American Physical Society, Woodbury, NY, 2019 (article)

Abstract
First-order reversal curves (FORCs) are a powerful tool to separate microscopic coercivities and interactions in a system without the need for lateral resolution. However, measured FORC densities are not always straightforward to interpret, especially if the system is interaction dominated and the Preisach-like interpretation of the FORC density breaks down. This is why FORC is often seen as a magnetic fingerprint instead of a measurement method yielding quantitative information. To understand additional features arising from the interactions in the system, we purposely designed permalloy microstructures which violate the Mayergoyz criteria. These artificial systems allow us to isolate the origin of an additional interaction peak in the FORC density. Modeling the system as a superposition of dipoles allows us to extract interaction strength parameters from this static simulation. Additionally, we suggest a linear relation between integrated interaction peak volume and interaction strength within the system. The presented correlation could be used to investigate the interaction behavior of samples as a function of structural parameters within a series of FORC measurements. This is an important step towards a more quantitative understanding of FORCs which violate the Mayergoyz criteria and away from a fingerprint interpretation.

mms

DOI [BibTex]