Header logo is


2011


no image
Planning manipulation and grasping tasks with a redundant arm

Gray, S. R., Romano, J. M., Brindza, J., Kim, S., Kuchenbecker, K. J., Kumar, V.

In Proc. ASME International Design Engineering Technical Conferences, Washington, D.C., USA, 2011, DETC2011-47453. Oral presentation given by Gray (inproceedings)

hi

[BibTex]

2011


[BibTex]


no image
Lessons in Using Vibrotactile Feedback to Guide Fast Arm Motions

Bark, K., Khanna, P., Irwin, R., Kapur, P., Jax, S. A., Buxbaum, L. J., Kuchenbecker, K. J.

In Proc. IEEE World Haptics Conference, pages: 355-360, Istanbul, Turkey, June 2011, Poster presentation given by Bark (inproceedings)

hi

[BibTex]

[BibTex]


no image
Haptically Assisted Golf Putting Through a Planar Four-Cable System

Huang, P. Y., Kunkel, J. A., Brindza, J., Kuchenbecker, K. J.

In Proc. IEEE World Haptics Conference, pages: 191-196, Istanbul, Turkey, June 2011, Poster presentation given by Kuchenbecker (inproceedings)

hi

[BibTex]

[BibTex]


no image
Design of Body-Grounded Tactile Actuators for Playback of Human Physical Contact

Stanley, A. A., Kuchenbecker, K. J.

In Proc. IEEE World Haptics Conference, pages: 563-568, Istanbul, Turkey, June 2011, Poster presentation given by Stanley (inproceedings)

hi

[BibTex]

[BibTex]


no image
Tool Vibration Feedback May Help Expert Robotic Surgeons Apply Less Force During Manipulation Tasks

McMahan, W., Bark, K., Gewirtz, J., Standish, D., Martin, P. D., Kunkel, J. A., Lilavois, M., Wedmid, A., Lee, D. I., Kuchenbecker, K. J.

In Proc. Hamlyn Symposium on Medical Robotics, pages: 37-38, London, England, June 2011, Oral Presentation given by Kuchenbecker (inproceedings)

hi

[BibTex]

[BibTex]


no image
Haptography: Capturing and Recreating the Rich Feel of Real Surfaces

Kuchenbecker, K. J., Romano, J. M., McMahan, W.

In Proceedings of the International Symposium on Robotics Research (ISRR), 70, pages: 245-260, Springer Tracts in Advanced Robotics, Springer, 2011, Oral presentation given by Kuchenbecker in August of 2009 (inproceedings)

hi

[BibTex]

[BibTex]

2010


no image
VerroTouch: High-Frequency Acceleration Feedback for Telerobotic Surgery

Kuchenbecker, K. J., Gewirtz, J., McMahan, W., Standish, D., Martin, P., Bohren, J., Mendoza, P. J., Lee, D. I.

In Haptics: Generating and Perceiving Tangible Sensations, Proc. EuroHaptics, Part I, 6191, pages: 189-196, Lecture Notes in Computer Science, Springer, Amsterdam, Netherlands, July 2010, Oral presentation given by Kuchenbecker (inproceedings)

hi

[BibTex]

2010


[BibTex]


no image
Automatic Filter Design for Synthesis of Haptic Textures from Recorded Acceleration Data

Romano, J. M., Yoshioka, T., Kuchenbecker, K. J.

In Proc. IEEE International Conference on Robotics and Automation, pages: 1815-1821, Anchorage, Alaska, USA, May 2010, Oral presentation given by Romano (inproceedings)

hi

[BibTex]

[BibTex]


no image
Control of a High Fidelity Ungrounded Torque Feedback Device: The iTorqU 2.1

Winfree, K. N., Romano, J. M., Gewirtz, J., Kuchenbecker, K. J.

In Proc. IEEE International Conference on Robotics and Automation, pages: 1347-1352, Anchorage, Alaska, May 2010, Oral presentation given by Winfree (inproceedings)

hi

[BibTex]

[BibTex]


no image
High Frequency Acceleration Feedback Significantly Increases the Realism of Haptically Rendered Textured Surfaces

McMahan, W., Romano, J. M., Rahuman, A. M. A., Kuchenbecker, K. J.

In Proc. IEEE Haptics Symposium, pages: 141-148, Waltham, Massachusetts, March 2010, Oral presentation given by McMahan (inproceedings)

hi

[BibTex]

[BibTex]


no image
Spatially distributed tactile feedback for kinesthetic motion guidance

Kapur, P., Jensen, M., Buxbaum, L. J., Jax, S. A., Kuchenbecker, K. J.

In Proc. IEEE Haptics Symposium, pages: 519-526, Waltham, Massachusetts, USA, March 2010, Poster presentation given by Kapur. {F}inalist for Best Poster Award (inproceedings)

hi

[BibTex]

[BibTex]


no image
Dimensional Reduction of High-Frequency Accelerations for Haptic Rendering

Landin, N., Romano, J. M., McMahan, W., Kuchenbecker, K. J.

In Haptics: Generating and Perceiving Tangible Sensations: Part II (Proceedings of EuroHaptics), 6192, pages: 79-86, Lecture Notes in Computer Science, Springer, Amsterdam, Netherlands, 2010, Poster presentation given by Landin (inproceedings)

hi

[BibTex]

[BibTex]


Graph signature for self-reconfiguration planning of modules with symmetry
Graph signature for self-reconfiguration planning of modules with symmetry

Asadpour, M., Ashtiani, M. H. Z., Spröwitz, A., Ijspeert, A. J.

In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 5295-5300, IEEE, St. Louis, MO, 2010 (inproceedings)

Abstract
In our previous works we had developed a framework for self-reconfiguration planning based on graph signature and graph edit-distance. The graph signature is a fast isomorphism test between different configurations and the graph edit-distance is a similarity metric. But the algorithm is not suitable for modules with symmetry. In this paper we improve the algorithm in order to deal with symmetric modules. Also, we present a new heuristic function to guide the search strategy by penalizing the solutions with more number of actions. The simulation results show the new algorithm not only deals with symmetric modules successfully but also finds better solutions in a shorter time.

dlg

DOI [BibTex]

DOI [BibTex]


no image
VerroTouch: A Vibrotactile Feedback System for Minimally Invasive Robotic Surgery

Kuchenbecker, K. J., Gewirtz, J., McMahan, W., Standish, D., Bohren, J., Martin, P., Wedmid, A., Mendoza, P. J., Lee, D. I.

In Proc. 28th World Congress of Endourology, 2010, PS8-14. Poster presentation given by Wedmid (inproceedings)

hi

[BibTex]

[BibTex]


Roombots - Towards decentralized reconfiguration with self-reconfiguring modular robotic metamodules
Roombots - Towards decentralized reconfiguration with self-reconfiguring modular robotic metamodules

Spröwitz, A., Laprade, P., Bonardi, S., Mayer, M., Moeckel, R., Mudry, P., Ijspeert, A. J.

In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 1126-1132, IEEE, Taipeh, 2010 (inproceedings)

Abstract
This paper presents our work towards a decentralized reconfiguration strategy for self-reconfiguring modular robots, assembling furniture-like structures from Roombots (RB) metamodules. We explore how reconfiguration by loco- motion from a configuration A to a configuration B can be controlled in a distributed fashion. This is done using Roombots metamodules—two Roombots modules connected serially—that use broadcast signals, lookup tables of their movement space, assumptions about their neighborhood, and connections to a structured surface to collectively build desired structures without the need of a centralized planner.

dlg

DOI [BibTex]

DOI [BibTex]


Automatic Gait Generation in Modular Robots: to Oscillate or to Rotate? that is the question
Automatic Gait Generation in Modular Robots: to Oscillate or to Rotate? that is the question

Pouya, S., van den Kieboom, J., Spröwitz, A., Ijspeert, A. J.

In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 514-520, IEEE, Taipei, 2010 (inproceedings)

Abstract
Modular robots offer the possibility to design robots with a high diversity of shapes and functionalities. This nice feature also brings an important challenge: namely how to design efficient locomotion gaits for arbitrary robot structures with many degrees of freedom. In this paper, we present a framework that allows one to explore and identify highly different gaits for a given arbitrary- shaped modular robot. We use simulated robots made of several Roombots modules that have three rotational joints each. These modules have the interesting feature that they can produce both oscillatory movements (i.e. periodic movements around a rest position) and rotational movements (i.e. with continuously increasing angle), leading to very rich locomotion patterns. Here we ask ourselves which types of movements —purely oscillatory, purely rotational, or a combination of both— lead to the fastest gaits. To address this question we designed a control architecture based on a distributed system of coupled phase oscillators that can produce synchronized rotations and oscillations in many degrees of freedom. We also designed a specific optimization algorithm that can automatically design hybrid controllers, i.e. controllers that use oscillations in some joints and rotations in others, for fast gaits. The proposed framework is verified by multiple simulations for several robot morphologies. The results show that (i) the question whether it is better to oscillate or to rotate depends on the morphology of the robot, and that in general it is best to do both, (ii) the optimization framework can successfully generate hybrid controllers that outperform purely oscillatory and purely rotational ones, and (iii) the resulting gaits are fast, innovative, and would have been hard to design by hand.

dlg

DOI [BibTex]

DOI [BibTex]

2007


no image
The power of external mentors for women pursuing academic careers in engineering and science: Stories of MentorNet ACE and its Proteges and Mentors

Muller, C. B., Smith, E. H. B., Chou-Green, J., Daniels-Race, T., Drummond, A., Kuchenbecker, K. J.

In Proc. Women in Engineering Programs and Advocates Network (WEPAN) National Conference, Lake Buena Vista, Florida, USA, June 2007, Oral presentation given by Muller (inproceedings)

hi

[BibTex]

2007


[BibTex]


no image
Effects of Visual and Proprioceptive Position Feedback on Human Control of Targeted Movement

Kuchenbecker, K. J., Gurari, N., Okamura, A. M.

In Proc. IEEE International Conference on Rehabilitation Robotics, pages: 513-524, Noordwijk, Netherlands, June 2007, Oral and poster presentations given by Kuchenbecker (inproceedings)

hi

[BibTex]

[BibTex]


no image
Quantifying the value of visual and haptic position feedback in force-based motion control

Kuchenbecker, K. J., Gurari, N., Okamura, A. M.

In Proc. IEEE World Haptics Conference, pages: 561-562, Tsukuba, Japan, March 2007, Poster presentation given by Kuchenbecker (inproceedings)

hi

[BibTex]

[BibTex]


no image
Shaping event-based haptic transients via an improved understanding of real contact dynamics

Fiene, J. P., Kuchenbecker, K. J.

In Proc. IEEE World Haptics Conference, pages: 170-175, Tsukuba, Japan, March 2007, Oral presentation given by Fiene. {B}est Haptic Technology Paper Award (inproceedings)

hi

[BibTex]

[BibTex]


An easy to use bluetooth scatternet protocol for fast data exchange in wireless sensor networks and autonomous robots
An easy to use bluetooth scatternet protocol for fast data exchange in wireless sensor networks and autonomous robots

Mockel, R., Spröwitz, A., Maye, J., Ijspeert, A. J.

In Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 2801-2806, IEEE, San Diego, CA, 2007 (inproceedings)

Abstract
We present a Bluetooth scatternet protocol (SNP) that provides the user with a serial link to all connected members in a transparent wireless Bluetooth network. By using only local decision making we can reduce the overhead of our scatternet protocol dramatically. We show how our SNP software layer simplifies a variety of tasks like the synchronization of central pattern generator controllers for actuators, collecting sensory data and building modular robot structures. The whole Bluetooth software stack including our new scatternet layer is implemented on a single Bluetooth and memory chip. To verify and characterize the SNP we provide data from experiments using real hardware instead of software simulation. This gives a realistic overview of the scatternet performance showing higher order effects that are difficult to be simulated correctly and guaranties the correct function of the SNP in real world applications.

dlg

DOI [BibTex]

DOI [BibTex]