Header logo is


2019


no image
X-ray microscopic characterization of high-Tc-supercoductors using image processing

Bihler, M.

Universität Stuttgart, Stuttgart, 2019 (mastersthesis)

mms

[BibTex]

2019



no image
Novel X-ray lenses for direct and coherent imaging

Sanli, U. T.

Universität Stuttgart, Stuttgart, 2019 (phdthesis)

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2017


Robotic Motion Learning Framework to Promote Social Engagement
Robotic Motion Learning Framework to Promote Social Engagement

Burns, R.

The George Washington University, August 2017 (mastersthesis)

Abstract
This paper discusses a novel framework designed to increase human-robot interaction through robotic imitation of the user's gestures. The set up consists of a humanoid robotic agent that socializes with and play games with the user. For the experimental group, the robot also imitates one of the user's novel gestures during a play session. We hypothesize that the robot's use of imitation will increase the user's openness towards engaging with the robot. Preliminary results from a pilot study of 12 subjects are promising in that post-imitation, experimental subjects displayed a more positive emotional state, had higher instances of mood contagion towards the robot, and interpreted the robot to have a higher level of autonomy than their control group counterparts. These results point to an increased user interest in engagement fueled by personalized imitation during interaction.

hi

link (url) [BibTex]

2017


link (url) [BibTex]


Evaluation of the passive dynamics of compliant legs with inertia
Evaluation of the passive dynamics of compliant legs with inertia

Györfi, B.

University of Applied Science Pforzheim, Germany, 2017 (mastersthesis)

dlg

[BibTex]

[BibTex]


no image
Understanding FORC using synthetic micro-structured systems with variable coupling- and coercivefield distributions

Groß, Felix

Universität Stuttgart, Stuttgart, 2017 (mastersthesis)

mms

[BibTex]


no image
Adsorption von Wasserstoffmolekülen in nanoporösen Gerüststrukturen

Kotzur, Nadine

Universität Stuttgart, Stuttgart, 2017 (mastersthesis)

mms

[BibTex]

[BibTex]

2015


no image
Strukturelle und spektroskopische Eigenschaften epitaktischer FeMn/Co Exchange-Bias-Systeme

Schmidt, M.

Universität Stuttgart, Stuttgart, 2015 (phdthesis)

mms

link (url) DOI [BibTex]

2015



no image
Ultraschnelles Vortexkernschalten

Noske, M.

Universität Stuttgart, Stuttgart (und Cuvillier Verlag, Göttingen), 2015 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Investigations of unusual hard magnetic MnBi LTP phase, utilizing temperature dependent SQUID-FORC

Muralidhar, Shreyas

Universität Stuttgart, Stuttgart, 2015 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Magnetische Röntgenmikroskopie an Hochtemperatur-Supraleitern

Stahl, C.

Universität Stuttgart, Stuttgart (und Cuvillier Verlag, Göttingen), 2015 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Voltage-induced magnetic manipulation of a microstructured iron gold multilayer system

Sittig, Robert

Universität Stuttgart, Stuttgart, 2015 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Transfer of angular momentum from the spin system to the lattice during ultrafast magnetization

Tsatsoulis, T.

Universität Stuttgart, Stuttgart, 2015 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Quantum kinetic theory of ultrafast demagnetization by electron-phonon scattering

Briones Paz, J. Z.

Universität Stuttgart, Stuttgart, 2015 (mastersthesis)

mms

[BibTex]

[BibTex]

2013


no image
Determination of an Analysis Procedure for FEM-Based Fatigue Calculations

Serhat, G.

Technical University of Munich, December 2013 (mastersthesis)

hi

[BibTex]

2013


[BibTex]


Probabilistic Models for 3D Urban Scene Understanding from Movable Platforms
Probabilistic Models for 3D Urban Scene Understanding from Movable Platforms

Geiger, A.

Karlsruhe Institute of Technology, Karlsruhe Institute of Technology, April 2013 (phdthesis)

Abstract
Visual 3D scene understanding is an important component in autonomous driving and robot navigation. Intelligent vehicles for example often base their decisions on observations obtained from video cameras as they are cheap and easy to employ. Inner-city intersections represent an interesting but also very challenging scenario in this context: The road layout may be very complex and observations are often noisy or even missing due to heavy occlusions. While Highway navigation and autonomous driving on simple and annotated intersections have already been demonstrated successfully, understanding and navigating general inner-city crossings with little prior knowledge remains an unsolved problem. This thesis is a contribution to understanding multi-object traffic scenes from video sequences. All data is provided by a camera system which is mounted on top of the autonomous driving platform AnnieWAY. The proposed probabilistic generative model reasons jointly about the 3D scene layout as well as the 3D location and orientation of objects in the scene. In particular, the scene topology, geometry as well as traffic activities are inferred from short video sequences. The model takes advantage of monocular information in the form of vehicle tracklets, vanishing lines and semantic labels. Additionally, the benefit of stereo features such as 3D scene flow and occupancy grids is investigated. Motivated by the impressive driving capabilities of humans, no further information such as GPS, lidar, radar or map knowledge is required. Experiments conducted on 113 representative intersection sequences show that the developed approach successfully infers the correct layout in a variety of difficult scenarios. To evaluate the importance of each feature cue, experiments with different feature combinations are conducted. Additionally, the proposed method is shown to improve object detection and object orientation estimation performance.

avg ps

pdf [BibTex]

pdf [BibTex]


no image
Quantum kinetic theory for demagnetization after femtosecond laser pulses

Teeny, N.

Universität Stuttgart, Stuttgart, 2013 (mastersthesis)

mms

[BibTex]

[BibTex]