Header logo is


2009


Thumb xl synchro
Synchronized Oriented Mutations Algorithm for Training Neural Controllers

Berenz, V., Suzuki, K.

In Advances in Neuro-Information Processing: 15th International Conference, ICONIP 2008, Auckland, New Zealand, November 25-28, 2008, Revised Selected Papers, Part II, pages: 244-251, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009 (inbook)

am

link (url) DOI [BibTex]

2009


link (url) DOI [BibTex]


Thumb xl screen shot 2015 08 23 at 14.45.26
Integration of Visual Cues for Robotic Grasping

Bergström, N., Bohg, J., Kragic, D.

In Computer Vision Systems, 5815, pages: 245-254, Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2009 (incollection)

Abstract
In this paper, we propose a method that generates grasping actions for novel objects based on visual input from a stereo camera. We are integrating two methods that are advantageous either in predicting how to grasp an object or where to apply a grasp. The first one reconstructs a wire frame object model through curve matching. Elementary grasping actions can be associated to parts of this model. The second method predicts grasping points in a 2D contour image of an object. By integrating the information from the two approaches, we can generate a sparse set of full grasp configurations that are of a good quality. We demonstrate our approach integrated in a vision system for complex shaped objects as well as in cluttered scenes.

am

pdf link (url) DOI [BibTex]

pdf link (url) DOI [BibTex]


no image
The SL simulation and real-time control software package

Schaal, S.

University of Southern California, Los Angeles, CA, 2009, clmc (techreport)

Abstract
SL was originally developed as a Simulation Laboratory software package to allow creating complex rigid-body dynamics simulations with minimal development times. It was meant to complement a real-time robotics setup such that robot programs could first be debugged in simulation before trying them on the actual robot. For this purpose, the motor control setup of SL was copied from our experience with real-time robot setups with vxWorks (Windriver Systems, Inc.)Ñindeed, more than 90% of the code is identical to the actual robot software, as will be explained later in detail. As a result, SL is divided into three software components: 1) the generic code that is shared by the actual robot and the simulation, 2) the robot specific code, and 3) the simulation specific code. The robot specific code is tailored to the robotic environments that we have experienced over the years, in particular towards VME-based multi-processor real-time operating systems. The simulation specific code has all the components for OpenGL graphics simulations and mimics the robot multi-processor environment in simple C-code. Importantly, SL can be used stand-alone for creating graphics an-imationsÑthe heritage from real-time robotics does not restrict the complexity of possible simulations. This technical report describes SL in detail and can serve as a manual for new users of SL.

am

link (url) [BibTex]

link (url) [BibTex]


no image
The SL simulation and real-time control software package

Schaal, S.

University of Southern California, Los Angeles, CA, 2009, clmc (techreport)

Abstract
SL was originally developed as a Simulation Laboratory software package to allow creating complex rigid-body dynamics simulations with minimal development times. It was meant to complement a real-time robotics setup such that robot programs could first be debugged in simulation before trying them on the actual robot. For this purpose, the motor control setup of SL was copied from our experience with real-time robot setups with vxWorks (Windriver Systems, Inc.)â??indeed, more than 90% of the code is identical to the actual robot software, as will be explained later in detail. As a result, SL is divided into three software components: 1) the generic code that is shared by the actual robot and the simulation, 2) the robot specific code, and 3) the simulation specific code. The robot specific code is tailored to the robotic environments that we have experienced over the years, in particular towards VME-based multi-processor real-time operating systems. The simulation specific code has all the components for OpenGL graphics simulations and mimics the robot multi-processor environment in simple C-code. Importantly, SL can be used stand-alone for creating graphics an-imationsâ??the heritage from real-time robotics does not restrict the complexity of possible simulations. This technical report describes SL in detail and can serve as a manual for new users of SL.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Metal-Organic Frameworks

Panella, B., Hirscher, M.

In Encyclopedia of Electrochemical Power Sources, pages: 493-496, Elsevier, Amsterdam [et al.], 2009 (incollection)

mms

[BibTex]

[BibTex]


no image
Carbon Materials

Hirscher, M.

In Encyclopedia of Electrochemical Power Sources, pages: 484-487, Elsevier, Amsterdam [et al.], 2009 (incollection)

mms

[BibTex]

[BibTex]

2008


no image
Hydrogen adsorption (Carbon, Zeolites, Nanocubes)

Hirscher, M., Panella, B.

In Hydrogen as a Future Energy Carrier, pages: 173-188, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008 (incollection)

mms

[BibTex]

2008


[BibTex]


no image
Efficient inverse kinematics algorithms for highdimensional movement systems

Tevatia, G., Schaal, S.

CLMC Technical Report: TR-CLMC-2008-1, 2008, clmc (techreport)

Abstract
Real-time control of the endeffector of a humanoid robot in external coordinates requires computationally efficient solutions of the inverse kinematics problem. In this context, this paper investigates methods of resolved motion rate control (RMRC) that employ optimization criteria to resolve kinematic redundancies. In particular we focus on two established techniques, the pseudo inverse with explicit optimization and the extended Jacobian method. We prove that the extended Jacobian method includes pseudo-inverse methods as a special solution. In terms of computational complexity, however, pseudo-inverse and extended Jacobian differ significantly in favor of pseudo-inverse methods. Employing numerical estimation techniques, we introduce a computationally efficient version of the extended Jacobian with performance comparable to the original version. Our results are illustrated in simulation studies with a multiple degree-offreedom robot, and were evaluated on an actual 30 degree-of-freedom full-body humanoid robot.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Ma\ssgeschneiderte Speichermaterialien

Hirscher, M.

In Von Brennstoffzellen bis Leuchtdioden (Energie und Chemie - Ein Bündnis für die Zukunft), pages: 31-33, Deutsche Bunsen-Gesellschaft für Physikalische Chemie e.V., Frankfurt am Main, 2008 (incollection)

mms

[BibTex]

[BibTex]