Header logo is


2006


no image
Movement generation using dynamical systems : a humanoid robot performing a drumming task

Degallier, S., Santos, C. P., Righetti, L., Ijspeert, A.

In 2006 6th IEEE-RAS International Conference on Humanoid Robots, pages: 512-517, IEEE, Genova, Italy, 2006 (inproceedings)

Abstract
The online generation of trajectories in humanoid robots remains a difficult problem. In this contribution, we present a system that allows the superposition, and the switch between, discrete and rhythmic movements. Our approach uses nonlinear dynamical systems for generating trajectories online and in real time. Our goal is to make use of attractor properties of dynamical systems in order to provide robustness against small perturbations and to enable online modulation of the trajectories. The system is demonstrated on a humanoid robot performing a drumming task.

mg

link (url) DOI [BibTex]

2006


link (url) DOI [BibTex]


no image
Design methodologies for central pattern generators: an application to crawling humanoids

Righetti, L., Ijspeert, A.

In Proceedings of Robotics: Science and Systems, Philadelphia, USA, August 2006 (inproceedings)

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Programmable central pattern generators: an application to biped locomotion control

Righetti, L., Ijspeert, A.

In Proceedings of the IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., pages: 1585-1590, IEEE, 2006 (inproceedings)

mg

[BibTex]

[BibTex]

2004


no image
Operating system support for interface virtualisation of reconfigurable coprocessors

Vuletic, M., Righetti, L., Pozzi, L., Ienne, P.

In In Proceedings of the Design, Automation and Test in Europe Conference and Exhibition, pages: 748-749, IEEE, Paris, France, 2004 (inproceedings)

Abstract
Reconfigurable systems-on-chip (SoC) consist of large field programmable gate arrays (FPGAs) and standard processors. The reconfigurable logic can be used for application-specific coprocessors to speedup execution of applications. The widespread use is limited by the complexity of interfacing software applications with coprocessors. We present a virtualization layer that lowers the interfacing complexity and improves the portability. The layer shifts the burden of moving data between processor and coprocessor from the programmer to the operating system (OS). A reconfigurable SoC running Linux is used to prove the concept.

mg

link (url) DOI [BibTex]

2004


link (url) DOI [BibTex]