Header logo is


2019


Learning to Explore in Motion and Interaction Tasks
Learning to Explore in Motion and Interaction Tasks

Bogdanovic, M., Righetti, L.

Proceedings 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 2686-2692, IEEE, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), November 2019, ISSN: 2153-0866 (conference)

Abstract
Model free reinforcement learning suffers from the high sampling complexity inherent to robotic manipulation or locomotion tasks. Most successful approaches typically use random sampling strategies which leads to slow policy convergence. In this paper we present a novel approach for efficient exploration that leverages previously learned tasks. We exploit the fact that the same system is used across many tasks and build a generative model for exploration based on data from previously solved tasks to improve learning new tasks. The approach also enables continuous learning of improved exploration strategies as novel tasks are learned. Extensive simulations on a robot manipulator performing a variety of motion and contact interaction tasks demonstrate the capabilities of the approach. In particular, our experiments suggest that the exploration strategy can more than double learning speed, especially when rewards are sparse. Moreover, the algorithm is robust to task variations and parameter tuning, making it beneficial for complex robotic problems.

mg

DOI [BibTex]

2019


DOI [BibTex]


no image
Robust Humanoid Locomotion Using Trajectory Optimization and Sample-Efficient Learning

Yeganegi, M. H., Khadiv, M., Moosavian, S. A. A., Zhu, J., Prete, A. D., Righetti, L.

Proceedings International Conference on Humanoid Robots, IEEE, 2019 IEEE-RAS International Conference on Humanoid Robots, October 2019 (conference)

Abstract
Trajectory optimization (TO) is one of the most powerful tools for generating feasible motions for humanoid robots. However, including uncertainties and stochasticity in the TO problem to generate robust motions can easily lead to intractable problems. Furthermore, since the models used in TO have always some level of abstraction, it can be hard to find a realistic set of uncertainties in the model space. In this paper we leverage a sample-efficient learning technique (Bayesian optimization) to robustify TO for humanoid locomotion. The main idea is to use data from full-body simulations to make the TO stage robust by tuning the cost weights. To this end, we split the TO problem into two phases. The first phase solves a convex optimization problem for generating center of mass (CoM) trajectories based on simplified linear dynamics. The second stage employs iterative Linear-Quadratic Gaussian (iLQG) as a whole-body controller to generate full body control inputs. Then we use Bayesian optimization to find the cost weights to use in the first stage that yields robust performance in the simulation/experiment, in the presence of different disturbance/uncertainties. The results show that the proposed approach is able to generate robust motions for different sets of disturbances and uncertainties.

mg

https://arxiv.org/abs/1907.04616 link (url) [BibTex]

https://arxiv.org/abs/1907.04616 link (url) [BibTex]


How do people learn how to plan?
How do people learn how to plan?

Jain, Y. R., Gupta, S., Rakesh, V., Dayan, P., Callaway, F., Lieder, F.

Conference on Cognitive Computational Neuroscience, September 2019 (conference)

Abstract
How does the brain learn how to plan? We reverse-engineer people's underlying learning mechanisms by combining rational process models of cognitive plasticity with recently developed empirical methods that allow us to trace the temporal evolution of people's planning strategies. We find that our Learned Value of Computation model (LVOC) accurately captures people's average learning curve. However, there were also substantial individual differences in metacognitive learning that are best understood in terms of multiple different learning mechanisms-including strategy selection learning. Furthermore, we observed that LVOC could not fully capture people's ability to adaptively decide when to stop planning. We successfully extended the LVOC model to address these discrepancies. Our models broadly capture people's ability to improve their decision mechanisms and represent a significant step towards reverse-engineering how the brain learns increasingly effective cognitive strategies through its interaction with the environment.

re

How do people learn to plan? How do people learn to plan? [BibTex]

How do people learn to plan? How do people learn to plan? [BibTex]


no image
Testing Computational Models of Goal Pursuit

Mohnert, F., Tosic, M., Lieder, F.

CCN2019, September 2019 (conference)

Abstract
Goals are essential to human cognition and behavior. But how do we pursue them? To address this question, we model how capacity limits on planning and attention shape the computational mechanisms of human goal pursuit. We test the predictions of a simple model based on previous theories in a behavioral experiment. The results show that to fully capture how people pursue their goals it is critical to account for people’s limited attention in addition to their limited planning. Our findings elucidate the cognitive constraints that shape human goal pursuit and point to an improved model of human goal pursuit that can reliably predict which goals a person will achieve and which goals they will struggle to pursue effectively.

re

link (url) DOI Project Page [BibTex]


no image
Measuring How People Learn How to Plan

Jain, Y. R., Callaway, F., Lieder, F.

Proceedings 41st Annual Meeting of the Cognitive Science Society, pages: 1956-1962, CogSci2019, 41st Annual Meeting of the Cognitive Science Society, July 2019 (conference)

Abstract
The human mind has an unparalleled ability to acquire complex cognitive skills, discover new strategies, and refine its ways of thinking and decision-making; these phenomena are collectively known as cognitive plasticity. One important manifestation of cognitive plasticity is learning to make better–more far-sighted–decisions via planning. A serious obstacle to studying how people learn how to plan is that cognitive plasticity is even more difficult to observe than cognitive strategies are. To address this problem, we develop a computational microscope for measuring cognitive plasticity and validate it on simulated and empirical data. Our approach employs a process tracing paradigm recording signatures of human planning and how they change over time. We then invert a generative model of the recorded changes to infer the underlying cognitive plasticity. Our computational microscope measures cognitive plasticity significantly more accurately than simpler approaches, and it correctly detected the effect of an external manipulation known to promote cognitive plasticity. We illustrate how computational microscopes can be used to gain new insights into the time course of metacognitive learning and to test theories of cognitive development and hypotheses about the nature of cognitive plasticity. Future work will leverage our computational microscope to reverse-engineer the learning mechanisms enabling people to acquire complex cognitive skills such as planning and problem solving.

re

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Extending Rationality

Pothos, E. M., Busemeyer, J. R., Pleskac, T., Yearsley, J. M., Tenenbaum, J. B., Goodman, N. D., Tessler, M. H., Griffiths, T. L., Lieder, F., Hertwig, R., Pachur, T., Leuker, C., Shiffrin, R. M.

Proceedings of the 41st Annual Conference of the Cognitive Science Society, pages: 39-40, CogSci 2019, July 2019 (conference)

re

Proceedings of the 41st Annual Conference of the Cognitive Science Society [BibTex]

Proceedings of the 41st Annual Conference of the Cognitive Science Society [BibTex]


How should we incentivize learning? An optimal feedback mechanism for educational games and online courses
How should we incentivize learning? An optimal feedback mechanism for educational games and online courses

Xu, L., Wirzberger, M., Lieder, F.

41st Annual Meeting of the Cognitive Science Society, July 2019 (conference)

Abstract
Online courses offer much-needed opportunities for lifelong self-directed learning, but people rarely follow through on their noble intentions to complete them. To increase student retention educational software often uses game elements to motivate students to engage in and persist in learning activities. However, gamification only works when it is done properly, and there is currently no principled method that educational software could use to achieve this. We develop a principled feedback mechanism for encouraging good study choices and persistence in self-directed learning environments. Rather than giving performance feedback, our method rewards the learner's efforts with optimal brain points that convey the value of practice. To derive these optimal brain points, we applied the theory of optimal gamification to a mathematical model of skill acquisition. In contrast to hand-designed incentive structures, optimal brain points are constructed in such a way that the incentive system cannot be gamed. Evaluating our method in a behavioral experiment, we find that optimal brain points significantly increased the proportion of participants who instead of exploiting an inefficient skill they already knew-attempted to learn a difficult but more efficient skill, persisted through failure, and succeeded to master the new skill. Our method provides a principled approach to designing incentive structures and feedback mechanisms for educational games and online courses. We are optimistic that optimal brain points will prove useful for increasing student retention and helping people overcome the motivational obstacles that stand in the way of self-directed lifelong learning.

re

link (url) Project Page [BibTex]


no image
What’s in the Adaptive Toolbox and How Do People Choose From It? Rational Models of Strategy Selection in Risky Choice

Mohnert, F., Pachur, T., Lieder, F.

41st Annual Meeting of the Cognitive Science Society, July 2019 (conference)

Abstract
Although process data indicates that people often rely on various (often heuristic) strategies to choose between risky options, our models of heuristics cannot predict people's choices very accurately. To address this challenge, it has been proposed that people adaptively choose from a toolbox of simple strategies. But which strategies are contained in this toolbox? And how do people decide when to use which decision strategy? Here, we develop a model according to which each person selects decisions strategies rationally from their personal toolbox; our model allows one to infer which strategies are contained in the cognitive toolbox of an individual decision-maker and specifies when she will use which strategy. Using cross-validation on an empirical data set, we find that this rational model of strategy selection from a personal adaptive toolbox predicts people's choices better than any single strategy (even when it is allowed to vary across participants) and better than previously proposed toolbox models. Our model comparisons show that both inferring the toolbox and rational strategy selection are critical for accurately predicting people's risky choices. Furthermore, our model-based data analysis reveals considerable individual differences in the set of strategies people are equipped with and how they choose among them; these individual differences could partly explain why some people make better choices than others. These findings represent an important step towards a complete formalization of the notion that people select their cognitive strategies from a personal adaptive toolbox.

re

link (url) [BibTex]


no image
Measuring How People Learn How to Plan

Jain, Y. R., Callaway, F., Lieder, F.

pages: 357-361, RLDM 2019, July 2019 (conference)

Abstract
The human mind has an unparalleled ability to acquire complex cognitive skills, discover new strategies, and refine its ways of thinking and decision-making; these phenomena are collectively known as cognitive plasticity. One important manifestation of cognitive plasticity is learning to make better – more far-sighted – decisions via planning. A serious obstacle to studying how people learn how to plan is that cognitive plasticity is even more difficult to observe than cognitive strategies are. To address this problem, we develop a computational microscope for measuring cognitive plasticity and validate it on simulated and empirical data. Our approach employs a process tracing paradigm recording signatures of human planning and how they change over time. We then invert a generative model of the recorded changes to infer the underlying cognitive plasticity. Our computational microscope measures cognitive plasticity significantly more accurately than simpler approaches, and it correctly detected the effect of an external manipulation known to promote cognitive plasticity. We illustrate how computational microscopes can be used to gain new insights into the time course of metacognitive learning and to test theories of cognitive development and hypotheses about the nature of cognitive plasticity. Future work will leverage our computational microscope to reverse-engineer the learning mechanisms enabling people to acquire complex cognitive skills such as planning and problem solving.

re

link (url) [BibTex]

link (url) [BibTex]


no image
A Cognitive Tutor for Helping People Overcome Present Bias

Lieder, F., Callaway, F., Jain, Y. R., Krueger, P. M., Das, P., Gul, S., Griffiths, T. L.

RLDM 2019, July 2019, Falk Lieder and Frederick Callaway contributed equally to this publication. (conference)

Abstract
People's reliance on suboptimal heuristics gives rise to a plethora of cognitive biases in decision-making including the present bias, which denotes people's tendency to be overly swayed by an action's immediate costs/benefits rather than its more important long-term consequences. One approach to helping people overcome such biases is to teach them better decision strategies. But which strategies should we teach them? And how can we teach them effectively? Here, we leverage an automatic method for discovering rational heuristics and insights into how people acquire cognitive skills to develop an intelligent tutor that teaches people how to make better decisions. As a proof of concept, we derive the optimal planning strategy for a simple model of situations where people fall prey to the present bias. Our cognitive tutor teaches people this optimal planning strategy by giving them metacognitive feedback on how they plan in a 3-step sequential decision-making task. Our tutor's feedback is designed to maximally accelerate people's metacognitive reinforcement learning towards the optimal planning strategy. A series of four experiments confirmed that training with the cognitive tutor significantly reduced present bias and improved people's decision-making competency: Experiment 1 demonstrated that the cognitive tutor's feedback can help participants discover far-sighted planning strategies. Experiment 2 found that this training effect transfers to more complex environments. Experiment 3 found that these transfer effects are retained for at least 24 hours after the training. Finally, Experiment 4 found that practicing with the cognitive tutor can have additional benefits over being told the strategy in words. The results suggest that promoting metacognitive reinforcement learning with optimal feedback is a promising approach to improving the human mind.

re

DOI [BibTex]

DOI [BibTex]


no image
Introducing the Decision Advisor: A simple online tool that helps people overcome cognitive biases and experience less regret in real-life decisions

lawama, G., Greenberg, S., Moore, D., Lieder, F.

40th Annual Meeting of the Society for Judgement and Decision Making, June 2019 (conference)

Abstract
Cognitive biases shape many decisions people come to regret. To help people overcome these biases, Clear-erThinking.org developed a free online tool, called the Decision Advisor (https://programs.clearerthinking.org/decisionmaker.html). The Decision Advisor assists people in big real-life decisions by prompting them to generate more alternatives, guiding them to evaluate their alternatives according to principles of decision analysis, and educates them about pertinent biases while they are making their decision. In a within-subjects experiment, 99 participants reported significantly fewer biases and less regret for a decision supported by the Decision Advisor than for a previous unassisted decision.

re

DOI [BibTex]

DOI [BibTex]


no image
The Goal Characteristics (GC) questionannaire: A comprehensive measure for goals’ content, attainability, interestingness, and usefulness

Iwama, G., Wirzberger, M., Lieder, F.

40th Annual Meeting of the Society for Judgement and Decision Making, June 2019 (conference)

Abstract
Many studies have investigated how goal characteristics affect goal achievement. However, most of them considered only a small number of characteristics and the psychometric properties of their measures remains unclear. To overcome these limitations, we developed and validated a comprehensive questionnaire of goal characteristics with four subscales - measuring the goal’s content, attainability, interestingness, and usefulness respectively. 590 participants completed the questionnaire online. A confirmatory factor analysis supported the four subscales and their structure. The GC questionnaire (https://osf.io/qfhup) can be easily applied to investigate goal setting, pursuit and adjustment in a wide range of contexts.

re

DOI [BibTex]


no image
Efficient Humanoid Contact Planning using Learned Centroidal Dynamics Prediction

Lin, Y., Ponton, B., Righetti, L., Berenson, D.

International Conference on Robotics and Automation (ICRA), pages: 5280-5286, IEEE, May 2019 (conference)

mg

DOI [BibTex]

DOI [BibTex]


Leveraging Contact Forces for Learning to Grasp
Leveraging Contact Forces for Learning to Grasp

Merzic, H., Bogdanovic, M., Kappler, D., Righetti, L., Bohg, J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2019, IEEE, International Conference on Robotics and Automation, May 2019 (inproceedings)

Abstract
Grasping objects under uncertainty remains an open problem in robotics research. This uncertainty is often due to noisy or partial observations of the object pose or shape. To enable a robot to react appropriately to unforeseen effects, it is crucial that it continuously takes sensor feedback into account. While visual feedback is important for inferring a grasp pose and reaching for an object, contact feedback offers valuable information during manipulation and grasp acquisition. In this paper, we use model-free deep reinforcement learning to synthesize control policies that exploit contact sensing to generate robust grasping under uncertainty. We demonstrate our approach on a multi-fingered hand that exhibits more complex finger coordination than the commonly used two- fingered grippers. We conduct extensive experiments in order to assess the performance of the learned policies, with and without contact sensing. While it is possible to learn grasping policies without contact sensing, our results suggest that contact feedback allows for a significant improvement of grasping robustness under object pose uncertainty and for objects with a complex shape.

am mg

video arXiv [BibTex]

video arXiv [BibTex]


no image
Soft Sensors for Curvature Estimation under Water in a Soft Robotic Fish

Wright, Brian, Vogt, Daniel M., Wood, Robert J., Jusufi, Ardian

In 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft 2019), pages: 367-371, IEEE, Piscataway, NJ, 2nd IEEE International Conference on Soft Robotics (RoboSoft 2019), 2019 (inproceedings)

bio

DOI [BibTex]

DOI [BibTex]


no image
Remediating Cognitive Decline with Cognitive Tutors

Das, P., Callaway, F., Griffiths, T. L., Lieder, F.

RLDM 2019, 2019 (conference)

Abstract
As people age, their cognitive abilities tend to deteriorate, including their ability to make complex plans. To remediate this cognitive decline, many commercial brain training programs target basic cognitive capacities, such as working memory. We have recently developed an alternative approach: intelligent tutors that teach people cognitive strategies for making the best possible use of their limited cognitive resources. Here, we apply this approach to improve older adults' planning skills. In a process-tracing experiment we found that the decline in planning performance may be partly because older adults use less effective planning strategies. We also found that, with practice, both older and younger adults learned more effective planning strategies from experience. But despite these gains there was still room for improvement-especially for older people. In a second experiment, we let older and younger adults train their planning skills with an intelligent cognitive tutor that teaches optimal planning strategies via metacognitive feedback. We found that practicing planning with this intelligent tutor allowed older adults to catch up to their younger counterparts. These findings suggest that intelligent tutors that teach clever cognitive strategies can help aging decision-makers stay sharp.

re

DOI [BibTex]

DOI [BibTex]


no image
Heads or Tails? Cranio-Caudal Mass Distribution for Robust Locomotion with Biorobotic Appendages Composed of 3D-Printed Soft Materials

Siddall, R., Schwab, F., Michel, J., Weaver, J., Jusufi, A.

In Biomimetic and Biohybrid Systems, 11556, pages: 240-253, Lecture Notes in Artificial Intelligence, (Editors: Martinez-Hernandez, Uriel and Vouloutsi, Vasiliki and Mura, Anna and Mangan, Michael and Asada, Minoru and Prescott, Tony J. and Verschure, Paul F. M. J.), Springer, Cham, Living Machines 2019: 8th International Conference on Biomimetic and Biohybrid Systems, 2019 (inproceedings)

bio

DOI [BibTex]

DOI [BibTex]

2011


no image
Learning Force Control Policies for Compliant Manipulation

Kalakrishnan, M., Righetti, L., Pastor, P., Schaal, S.

In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 4639-4644, IEEE, San Francisco, USA, sep 2011 (inproceedings)

Abstract
Developing robots capable of fine manipulation skills is of major importance in order to build truly assistive robots. These robots need to be compliant in their actuation and control in order to operate safely in human environments. Manipulation tasks imply complex contact interactions with the external world, and involve reasoning about the forces and torques to be applied. Planning under contact conditions is usually impractical due to computational complexity, and a lack of precise dynamics models of the environment. We present an approach to acquiring manipulation skills on compliant robots through reinforcement learning. The initial position control policy for manipulation is initialized through kinesthetic demonstration. We augment this policy with a force/torque profile to be controlled in combination with the position trajectories. We use the Policy Improvement with Path Integrals (PI2) algorithm to learn these force/torque profiles by optimizing a cost function that measures task success. We demonstrate our approach on the Barrett WAM robot arm equipped with a 6-DOF force/torque sensor on two different manipulation tasks: opening a door with a lever door handle, and picking up a pen off the table. We show that the learnt force control policies allow successful, robust execution of the tasks.

am mg

link (url) DOI [BibTex]

2011


link (url) DOI [BibTex]


no image
Control of legged robots with optimal distribution of contact forces

Righetti, L., Buchli, J., Mistry, M., Schaal, S.

In 2011 11th IEEE-RAS International Conference on Humanoid Robots, pages: 318-324, IEEE, Bled, Slovenia, 2011 (inproceedings)

Abstract
The development of agile and safe humanoid robots require controllers that guarantee both high tracking performance and compliance with the environment. More specifically, the control of contact interaction is of crucial importance for robots that will actively interact with their environment. Model-based controllers such as inverse dynamics or operational space control are very appealing as they offer both high tracking performance and compliance. However, while widely used for fully actuated systems such as manipulators, they are not yet standard controllers for legged robots such as humanoids. Indeed such robots are fundamentally different from manipulators as they are underactuated due to their floating-base and subject to switching contact constraints. In this paper we present an inverse dynamics controller for legged robots that use torque redundancy to create an optimal distribution of contact constraints. The resulting controller is able to minimize, given a desired motion, any quadratic cost of the contact constraints at each instant of time. In particular we show how this can be used to minimize tangential forces during locomotion, therefore significantly improving the locomotion of legged robots on difficult terrains. In addition to the theoretical result, we present simulations of a humanoid and a quadruped robot, as well as experiments on a real quadruped robot that demonstrate the advantages of the controller.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Motion Primitive Goals for Robust Manipulation

Stulp, F., Theodorou, E., Kalakrishnan, M., Pastor, P., Righetti, L., Schaal, S.

In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 325-331, IEEE, San Francisco, USA, sep 2011 (inproceedings)

Abstract
Applying model-free reinforcement learning to manipulation remains challenging for several reasons. First, manipulation involves physical contact, which causes discontinuous cost functions. Second, in manipulation, the end-point of the movement must be chosen carefully, as it represents a grasp which must be adapted to the pose and shape of the object. Finally, there is uncertainty in the object pose, and even the most carefully planned movement may fail if the object is not at the expected position. To address these challenges we 1) present a simplified, computationally more efficient version of our model-free reinforcement learning algorithm PI2; 2) extend PI2 so that it simultaneously learns shape parameters and goal parameters of motion primitives; 3) use shape and goal learning to acquire motion primitives that are robust to object pose uncertainty. We evaluate these contributions on a manipulation platform consisting of a 7-DOF arm with a 4-DOF hand.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Inverse Dynamics Control of Floating-Base Robots with External Constraints: a Unified View

Righetti, L., Buchli, J., Mistry, M., Schaal, S.

In 2011 IEEE International Conference on Robotics and Automation, pages: 1085-1090, IEEE, Shanghai, China, 2011 (inproceedings)

Abstract
Inverse dynamics controllers and operational space controllers have proved to be very efficient for compliant control of fully actuated robots such as fixed base manipulators. However legged robots such as humanoids are inherently different as they are underactuated and subject to switching external contact constraints. Recently several methods have been proposed to create inverse dynamics controllers and operational space controllers for these robots. In an attempt to compare these different approaches, we develop a general framework for inverse dynamics control and show that these methods lead to very similar controllers. We are then able to greatly simplify recent whole-body controllers based on operational space approaches using kinematic projections, bringing them closer to efficient practical implementations. We also generalize these controllers such that they can be optimal under an arbitrary quadratic cost in the commands.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Operational Space Control of Constrained and Underactuated Systems

Mistry, M., Righetti, L.

In Proceedings of Robotics: Science and Systems, Los Angeles, CA, USA, June 2011 (inproceedings)

Abstract
The operational space formulation (Khatib, 1987), applied to rigid-body manipulators, describes how to decouple task-space and null-space dynamics, and write control equations that correspond only to forces at the end-effector or, alternatively, only to motion within the null-space. We would like to apply this useful theory to modern humanoids and other legged systems, for manipulation or similar tasks, however these systems present additional challenges due to their underactuated floating bases and contact states that can dynamically change. In recent work, Sentis et al. derived controllers for such systems by implementing a task Jacobian projected into a space consistent with the supporting constraints and underactuation (the so called "support consistent reduced Jacobian"). Here, we take a new approach to derive operational space controllers for constrained underactuated systems, by first considering the operational space dynamics within "projected inverse-dynamics" (Aghili, 2005), and subsequently resolving underactuation through the addition of dynamically consistent control torques. Doing so results in a simplified control solution compared with previous results, and importantly yields several new insights into the underlying problem of operational space control in constrained environments: 1) Underactuated systems, such as humanoid robots, cannot in general completely decouple task and null-space dynamics. However, 2) there may exist an infinite number of control solutions to realize desired task-space dynamics, and 3) these solutions involve the addition of dynamically consistent null-space motion or constraint forces (or combinations of both). In light of these findings, we present several possible control solutions, with varying optimization criteria, and highlight some of their practical consequences.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Online movement adaptation based on previous sensor experiences

Pastor, P., Righetti, L., Kalakrishnan, M., Schaal, S.

In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 365-371, IEEE, San Francisco, USA, sep 2011 (inproceedings)

Abstract
Personal robots can only become widespread if they are capable of safely operating among humans. In uncertain and highly dynamic environments such as human households, robots need to be able to instantly adapt their behavior to unforseen events. In this paper, we propose a general framework to achieve very contact-reactive motions for robotic grasping and manipulation. Associating stereotypical movements to particular tasks enables our system to use previous sensor experiences as a predictive model for subsequent task executions. We use dynamical systems, named Dynamic Movement Primitives (DMPs), to learn goal-directed behaviors from demonstration. We exploit their dynamic properties by coupling them with the measured and predicted sensor traces. This feedback loop allows for online adaptation of the movement plan. Our system can create a rich set of possible motions that account for external perturbations and perception uncertainty to generate truly robust behaviors. As an example, we present an application to grasping with the WAM robot arm.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]