Header logo is


2011


Outdoor Human Motion Capture using Inverse Kinematics and von Mises-Fisher Sampling
Outdoor Human Motion Capture using Inverse Kinematics and von Mises-Fisher Sampling

Pons-Moll, G., Baak, A., Gall, J., Leal-Taixe, L., Mueller, M., Seidel, H., Rosenhahn, B.

In IEEE International Conference on Computer Vision (ICCV), pages: 1243-1250, November 2011 (inproceedings)

ps

project page pdf supplemental [BibTex]

2011


project page pdf supplemental [BibTex]


Home {3D} body scans from noisy image and range data
Home 3D body scans from noisy image and range data

Weiss, A., Hirshberg, D., Black, M.

In Int. Conf. on Computer Vision (ICCV), pages: 1951-1958, IEEE, Barcelona, November 2011 (inproceedings)

Abstract
The 3D shape of the human body is useful for applications in fitness, games and apparel. Accurate body scanners, however, are expensive, limiting the availability of 3D body models. We present a method for human shape reconstruction from noisy monocular image and range data using a single inexpensive commodity sensor. The approach combines low-resolution image silhouettes with coarse range data to estimate a parametric model of the body. Accurate 3D shape estimates are obtained by combining multiple monocular views of a person moving in front of the sensor. To cope with varying body pose, we use a SCAPE body model which factors 3D body shape and pose variations. This enables the estimation of a single consistent shape while allowing pose to vary. Additionally, we describe a novel method to minimize the distance between the projected 3D body contour and the image silhouette that uses analytic derivatives of the objective function. We propose a simple method to estimate standard body measurements from the recovered SCAPE model and show that the accuracy of our method is competitive with commercial body scanning systems costing orders of magnitude more.

ps

pdf YouTube poster Project Page Project Page [BibTex]

pdf YouTube poster Project Page Project Page [BibTex]


Means in spaces of tree-like shapes
Means in spaces of tree-like shapes

Aasa Feragen, Soren Hauberg, Mads Nielsen, Francois Lauze

In Computer Vision (ICCV), 2011 IEEE International Conference on, pages: 736 -746, IEEE, november 2011 (inproceedings)

ps

Publishers site PDF Suppl. material [BibTex]

Publishers site PDF Suppl. material [BibTex]


Everybody needs somebody: modeling social and grouping behavior on a linear programming multiple people tracker
Everybody needs somebody: modeling social and grouping behavior on a linear programming multiple people tracker

Leal-Taixé, L., Rosenhahn, G. P. A. B.

In IEEE International Conference on Computer Vision Workshops (IICCVW), November 2011 (inproceedings)

ps

project page pdf [BibTex]

project page pdf [BibTex]


Evaluating the Automated Alignment of {3D} Human Body Scans
Evaluating the Automated Alignment of 3D Human Body Scans

Hirshberg, D. A., Loper, M., Rachlin, E., Tsoli, A., Weiss, A., Corner, B., Black, M. J.

In 2nd International Conference on 3D Body Scanning Technologies, pages: 76-86, (Editors: D’Apuzzo, Nicola), Hometrica Consulting, Lugano, Switzerland, October 2011 (inproceedings)

Abstract
The statistical analysis of large corpora of human body scans requires that these scans be in alignment, either for a small set of key landmarks or densely for all the vertices in the scan. Existing techniques tend to rely on hand-placed landmarks or algorithms that extract landmarks from scans. The former is time consuming and subjective while the latter is error prone. Here we show that a model-based approach can align meshes automatically, producing alignment accuracy similar to that of previous methods that rely on many landmarks. Specifically, we align a low-resolution, artist-created template body mesh to many high-resolution laser scans. Our alignment procedure employs a robust iterative closest point method with a regularization that promotes smooth and locally rigid deformation of the template mesh. We evaluate our approach on 50 female body models from the CAESAR dataset that vary significantly in body shape. To make the method fully automatic, we define simple feature detectors for the head and ankles, which provide initial landmark locations. We find that, if body poses are fairly similar, as in CAESAR, the fully automated method provides dense alignments that enable statistical analysis and anthropometric measurement.

ps

pdf slides DOI Project Page [BibTex]

pdf slides DOI Project Page [BibTex]


Branch\&Rank: Non-Linear Object Detection
Branch&Rank: Non-Linear Object Detection

(Best Impact Paper Prize)

Lehmann, A., Gehler, P., VanGool, L.

In Proceedings of the British Machine Vision Conference (BMVC), pages: 8.1-8.11, (Editors: Jesse Hoey and Stephen McKenna and Emanuele Trucco), BMVA Press, September 2011, http://dx.doi.org/10.5244/C.25.8 (inproceedings)

ps

video of talk pdf slides supplementary [BibTex]

video of talk pdf slides supplementary [BibTex]


Efficient and Robust Shape Matching for Model Based Human Motion Capture
Efficient and Robust Shape Matching for Model Based Human Motion Capture

Pons-Moll, G., Leal-Taixé, L., Truong, T., Rosenhahn, B.

In German Conference on Pattern Recognition (GCPR), pages: 416-425, September 2011 (inproceedings)

ps

project page pdf [BibTex]

project page pdf [BibTex]


no image
BrainGate pilot clinical trials: Progress in translating neural engineering principles to clinical testing

Hochberg, L., Simeral, J., Black, M., Bacher, D., Barefoot, L., Berhanu, E., Borton, D., Cash, S., Feldman, J., Gallivan, E., Homer, M., Jarosiewicz, B., King, B., Liu, J., Malik, W., Masse, N., Perge, J., Rosler, D., Schmansky, N., Travers, B., Truccolo, W., Nurmikko, A., Donoghue, J.

33rd Annual International IEEE EMBS Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, August 2011 (conference)

ps

[BibTex]

[BibTex]


Learning Output Kernels with Block Coordinate Descent
Learning Output Kernels with Block Coordinate Descent

Dinuzzo, F., Ong, C. S., Gehler, P., Pillonetto, G.

In Proceedings of the 28th International Conference on Machine Learning (ICML-11), pages: 49-56, ICML ’11, (Editors: Getoor, Lise and Scheffer, Tobias), ACM, New York, NY, USA, ICML, June 2011 (inproceedings)

ei ps

data+code pdf [BibTex]

data+code pdf [BibTex]


Role of expertise and contralateral symmetry in the diagnosis of pneumoconiosis: an experimental study
Role of expertise and contralateral symmetry in the diagnosis of pneumoconiosis: an experimental study

Jampani, V., Vaidya, V., Sivaswamy, J., Tourani, K. L.

In Proc. SPIE 7966, Medical Imaging: Image Perception, Observer Performance, and Technology Assessment, 2011, Florida, March 2011 (inproceedings)

Abstract
Pneumoconiosis, a lung disease caused by the inhalation of dust, is mainly diagnosed using chest radiographs. The effects of using contralateral symmetric (CS) information present in chest radiographs in the diagnosis of pneumoconiosis are studied using an eye tracking experimental study. The role of expertise and the influence of CS information on the performance of readers with different expertise level are also of interest. Experimental subjects ranging from novices & medical students to staff radiologists were presented with 17 double and 16 single lung images, and were asked to give profusion ratings for each lung zone. Eye movements and the time for their diagnosis were also recorded. Kruskal-Wallis test (χ2(6) = 13.38, p = .038), showed that the observer error (average sum of absolute differences) in double lung images differed significantly across the different expertise categories when considering all the participants. Wilcoxon-signed rank test indicated that the observer error was significantly higher for single-lung images (Z = 3.13, p < .001) than for the double-lung images for all the participants. Mann-Whitney test (U = 28, p = .038) showed that the differential error between single and double lung images is significantly higher in doctors [staff & residents] than in non-doctors [others]. Thus, Expertise & CS information plays a significant role in the diagnosis of pneumoconiosis. CS information helps in diagnosing pneumoconiosis by reducing the general tendency of giving less profusion ratings. Training and experience appear to play important roles in learning to use the CS information present in the chest radiographs.

ps

url link (url) [BibTex]

url link (url) [BibTex]


Recovering Intrinsic Images with a Global Sparsity Prior on Reflectance
Recovering Intrinsic Images with a Global Sparsity Prior on Reflectance

Gehler, P., Rother, C., Kiefel, M., Zhang, L., Schölkopf, B.

In Advances in Neural Information Processing Systems 24, pages: 765-773, (Editors: Shawe-Taylor, John and Zemel, Richard S. and Bartlett, Peter L. and Pereira, Fernando C. N. and Weinberger, Kilian Q.), Curran Associates, Inc., Red Hook, NY, USA, Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
We address the challenging task of decoupling material properties from lighting properties given a single image. In the last two decades virtually all works have concentrated on exploiting edge information to address this problem. We take a different route by introducing a new prior on reflectance, that models reflectance values as being drawn from a sparse set of basis colors. This results in a Random Field model with global, latent variables (basis colors) and pixel-accurate output reflectance values. We show that without edge information high-quality results can be achieved, that are on par with methods exploiting this source of information. Finally, we are able to improve on state-of-the-art results by integrating edge information into our model. We believe that our new approach is an excellent starting point for future developments in this field.

ei ps

website + code pdf poster Project Page Project Page [BibTex]

website + code pdf poster Project Page Project Page [BibTex]


OpenBioSafetyLab: A virtual world based biosafety training application for medical students
OpenBioSafetyLab: A virtual world based biosafety training application for medical students

Nakasone, A., Tang, S., Shigematsu, M., Heinecke, B., Fujimoto, S., Prendinger, H.

In International Conference on Information Technology: New Generations (ITNG), IEEE CPS, 2011 (inproceedings)

ps

PDF [BibTex]

PDF [BibTex]


Combining wireless neural recording and video capture for the analysis of natural gait
Combining wireless neural recording and video capture for the analysis of natural gait

Foster, J., Freifeld, O., Nuyujukian, P., Ryu, S., Black, M. J., Shenoy, K.

In Proc. 5th Int. IEEE EMBS Conf. on Neural Engineering, pages: 613-616, IEEE, 2011 (inproceedings)

ps

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Tagged Cardiac MR Image Segmentation Using Boundary & Regional-Support   and Graph-based Deformable Priors
Tagged Cardiac MR Image Segmentation Using Boundary & Regional-Support and Graph-based Deformable Priors

Xiang, B., Wang, C., Deux, J., Rahmouni, A., Paragios, N.

In IEEE International Symposium on Biomedical Imaging (ISBI), 2011 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


Multiview Structure from Motion in Trajectory Space
Multiview Structure from Motion in Trajectory Space

Zaheer, A., Akhter, I., Mohammad, H. B., Marzban, S., Khan, S.

In Computer Vision (ICCV), 2011 IEEE International Conference on, pages: 2447-2453, 2011 (inproceedings)

Abstract
Most nonrigid objects exhibit temporal regularities in their deformations. Recently it was proposed that these regularities can be parameterized by assuming that the non- rigid structure lies in a small dimensional trajectory space. In this paper, we propose a factorization approach for 3D reconstruction from multiple static cameras under the com- pact trajectory subspace representation. Proposed factor- ization is analogous to rank-3 factorization of rigid struc- ture from motion problem, in transformed space. The benefit of our approach is that the 3D trajectory basis can be directly learned from the image observations. This also allows us to impute missing observations and denoise tracking errors without explicit estimation of the 3D structure. In contrast to standard triangulation based methods which require points to be visible in at least two cameras, our ap- proach can reconstruct points, which remain occluded even in all the cameras for quite a long time. This makes our solution especially suitable for occlusion handling in motion capture systems. We demonstrate robustness of our method on challenging real and synthetic scenarios.

ps

pdf project page [BibTex]

pdf project page [BibTex]


Unscented Kalman Filtering for Articulated Human Tracking
Unscented Kalman Filtering for Articulated Human Tracking

Anders Boesen Lindbo Larsen, Soren Hauberg, Kim S. Pedersen

In Image Analysis, 6688, pages: 228-237, Lecture Notes in Computer Science, (Editors: Heyden, Anders and Kahl, Fredrik), Springer Berlin Heidelberg, 2011 (inproceedings)

ps

Publishers site PDF [BibTex]

Publishers site PDF [BibTex]


no image
Adaptation for perception of the human body: Investigations of transfer across viewpoint and pose

Sekunova, A., Black, M. J., Parkinson, L., Barton, J. S.

Vision Sciences Society, 2011 (conference)

ps

[BibTex]

[BibTex]


Level Set Segmentation with Robust Image Gradient Energy and Statistical Shape Prior
Level Set Segmentation with Robust Image Gradient Energy and Statistical Shape Prior

Si Yong Yeo, Xianghua Xie, Igor Sazonov, Perumal Nithiarasu

In IEEE International Conference on Image Processing, pages: 3397 - 3400, 2011 (inproceedings)

Abstract
We propose a new level set segmentation method with statistical shape prior using a variational approach. The image energy is derived from a robust image gradient feature. This gives the active contour a global representation of the geometric configuration, making it more robust to image noise, weak edges and initial configurations. Statistical shape information is incorporated using nonparametric shape density distribution, which allows the model to handle relatively large shape variations. Comparative examples using both synthetic and real images show the robustness and efficiency of the proposed method.

ps

link (url) [BibTex]

link (url) [BibTex]


no image
Learning Force Control Policies for Compliant Manipulation

Kalakrishnan, M., Righetti, L., Pastor, P., Schaal, S.

In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 4639-4644, IEEE, San Francisco, USA, sep 2011 (inproceedings)

Abstract
Developing robots capable of fine manipulation skills is of major importance in order to build truly assistive robots. These robots need to be compliant in their actuation and control in order to operate safely in human environments. Manipulation tasks imply complex contact interactions with the external world, and involve reasoning about the forces and torques to be applied. Planning under contact conditions is usually impractical due to computational complexity, and a lack of precise dynamics models of the environment. We present an approach to acquiring manipulation skills on compliant robots through reinforcement learning. The initial position control policy for manipulation is initialized through kinesthetic demonstration. We augment this policy with a force/torque profile to be controlled in combination with the position trajectories. We use the Policy Improvement with Path Integrals (PI2) algorithm to learn these force/torque profiles by optimizing a cost function that measures task success. We demonstrate our approach on the Barrett WAM robot arm equipped with a 6-DOF force/torque sensor on two different manipulation tasks: opening a door with a lever door handle, and picking up a pen off the table. We show that the learnt force control policies allow successful, robust execution of the tasks.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Control of legged robots with optimal distribution of contact forces

Righetti, L., Buchli, J., Mistry, M., Schaal, S.

In 2011 11th IEEE-RAS International Conference on Humanoid Robots, pages: 318-324, IEEE, Bled, Slovenia, 2011 (inproceedings)

Abstract
The development of agile and safe humanoid robots require controllers that guarantee both high tracking performance and compliance with the environment. More specifically, the control of contact interaction is of crucial importance for robots that will actively interact with their environment. Model-based controllers such as inverse dynamics or operational space control are very appealing as they offer both high tracking performance and compliance. However, while widely used for fully actuated systems such as manipulators, they are not yet standard controllers for legged robots such as humanoids. Indeed such robots are fundamentally different from manipulators as they are underactuated due to their floating-base and subject to switching contact constraints. In this paper we present an inverse dynamics controller for legged robots that use torque redundancy to create an optimal distribution of contact constraints. The resulting controller is able to minimize, given a desired motion, any quadratic cost of the contact constraints at each instant of time. In particular we show how this can be used to minimize tangential forces during locomotion, therefore significantly improving the locomotion of legged robots on difficult terrains. In addition to the theoretical result, we present simulations of a humanoid and a quadruped robot, as well as experiments on a real quadruped robot that demonstrate the advantages of the controller.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Motion Primitive Goals for Robust Manipulation

Stulp, F., Theodorou, E., Kalakrishnan, M., Pastor, P., Righetti, L., Schaal, S.

In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 325-331, IEEE, San Francisco, USA, sep 2011 (inproceedings)

Abstract
Applying model-free reinforcement learning to manipulation remains challenging for several reasons. First, manipulation involves physical contact, which causes discontinuous cost functions. Second, in manipulation, the end-point of the movement must be chosen carefully, as it represents a grasp which must be adapted to the pose and shape of the object. Finally, there is uncertainty in the object pose, and even the most carefully planned movement may fail if the object is not at the expected position. To address these challenges we 1) present a simplified, computationally more efficient version of our model-free reinforcement learning algorithm PI2; 2) extend PI2 so that it simultaneously learns shape parameters and goal parameters of motion primitives; 3) use shape and goal learning to acquire motion primitives that are robust to object pose uncertainty. We evaluate these contributions on a manipulation platform consisting of a 7-DOF arm with a 4-DOF hand.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Inverse Dynamics Control of Floating-Base Robots with External Constraints: a Unified View

Righetti, L., Buchli, J., Mistry, M., Schaal, S.

In 2011 IEEE International Conference on Robotics and Automation, pages: 1085-1090, IEEE, Shanghai, China, 2011 (inproceedings)

Abstract
Inverse dynamics controllers and operational space controllers have proved to be very efficient for compliant control of fully actuated robots such as fixed base manipulators. However legged robots such as humanoids are inherently different as they are underactuated and subject to switching external contact constraints. Recently several methods have been proposed to create inverse dynamics controllers and operational space controllers for these robots. In an attempt to compare these different approaches, we develop a general framework for inverse dynamics control and show that these methods lead to very similar controllers. We are then able to greatly simplify recent whole-body controllers based on operational space approaches using kinematic projections, bringing them closer to efficient practical implementations. We also generalize these controllers such that they can be optimal under an arbitrary quadratic cost in the commands.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Benchmark datasets for pose estimation and tracking
Benchmark datasets for pose estimation and tracking

Andriluka, M., Sigal, L., Black, M. J.

In Visual Analysis of Humans: Looking at People, pages: 253-274, (Editors: Moesland and Hilton and Kr"uger and Sigal), Springer-Verlag, London, 2011 (incollection)

ps

publisher's site Project Page [BibTex]

publisher's site Project Page [BibTex]


Fields of experts
Fields of experts

Roth, S., Black, M. J.

In Markov Random Fields for Vision and Image Processing, pages: 297-310, (Editors: Blake, A. and Kohli, P. and Rother, C.), MIT Press, 2011 (incollection)

Abstract
Fields of Experts are high-order Markov random field (MRF) models with potential functions that extend over large pixel neighborhoods. The clique potentials are modeled as a Product of Experts using nonlinear functions of many linear filter responses. In contrast to previous MRF approaches, all parameters, including the linear filters themselves, are learned from training data. A Field of Experts (FoE) provides a generic, expressive image prior that can capture the statistics of natural scenes, and can be used for a variety of machine vision tasks. The capabilities of FoEs are demonstrated with two example applications, image denoising and image inpainting, which are implemented using a simple, approximate inference scheme. While the FoE model is trained on a generic image database and is not tuned toward a specific application, the results compete with specialized techniques.

ps

publisher site [BibTex]

publisher site [BibTex]


 HMDB: A Large Video Database for Human Motion Recognition
HMDB: A Large Video Database for Human Motion Recognition

Kuhne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.

In IEEE International Conference on Computer Vision (ICCV), 2011 (inproceedings)

ps

code, webpage, dataset pdf [BibTex]

code, webpage, dataset pdf [BibTex]


no image
Context dependent changes in grip selectivity in primate ventral premotor cortex

Franquemont, L., Vargas-Irwin, C., Black, M., Donoghue, J.

2011 Abstract Viewer and Itinerary Planner, Online, Society for Neuroscience, 2011, Online (conference)

ps

[BibTex]

[BibTex]


no image
Towards a freely moving animal model: Combining markerless multi-camera video capture and wirelessly transmitted neural recording for the analysis of walking

Foster, J., Freifeld, O., Nuyujukian, P., Ryu, S., Black, M., Shenoy, K.

2011 Abstract Viewer and Itinerary Planner, Society for Neuroscience, 2011, Online (conference)

ps

Project Page [BibTex]

Project Page [BibTex]


Variational Level Set Segmentation Using Shape Prior
Variational Level Set Segmentation Using Shape Prior

Si Yong Yeo, Xianghua Xie, Igor Sazonov, Perumal Nithiarasu

In International Conference on Mathematical and Computational Biomedical Engineering, 2011 (inproceedings)

ps

[BibTex]

[BibTex]


Shape and pose-invariant correspondences using probabilistic geodesic surface embedding
Shape and pose-invariant correspondences using probabilistic geodesic surface embedding

Tsoli, A., Black, M. J.

In 33rd Annual Symposium of the German Association for Pattern Recognition (DAGM), 6835, pages: 256-265, Lecture Notes in Computer Science, (Editors: Mester, Rudolf and Felsberg, Michael), Springer, 2011 (inproceedings)

Abstract
Correspondence between non-rigid deformable 3D objects provides a foundation for object matching and retrieval, recognition, and 3D alignment. Establishing 3D correspondence is challenging when there are non-rigid deformations or articulations between instances of a class. We present a method for automatically finding such correspondences that deals with significant variations in pose, shape and resolution between pairs of objects.We represent objects as triangular meshes and consider normalized geodesic distances as representing their intrinsic characteristics. Geodesic distances are invariant to pose variations and nearly invariant to shape variations when properly normalized. The proposed method registers two objects by optimizing a joint probabilistic model over a subset of vertex pairs between the objects. The model enforces preservation of geodesic distances between corresponding vertex pairs and inference is performed using loopy belief propagation in a hierarchical scheme. Additionally our method prefers solutions in which local shape information is consistent at matching vertices. We quantitatively evaluate our method and show that is is more accurate than a state of the art method.

ps

pdf talk Project Page [BibTex]

pdf talk Project Page [BibTex]


Steerable random fields for image restoration and inpainting
Steerable random fields for image restoration and inpainting

Roth, S., Black, M. J.

In Markov Random Fields for Vision and Image Processing, pages: 377-387, (Editors: Blake, A. and Kohli, P. and Rother, C.), MIT Press, 2011 (incollection)

Abstract
This chapter introduces the concept of a Steerable Random Field (SRF). In contrast to traditional Markov random field (MRF) models in low-level vision, the random field potentials of a SRF are defined in terms of filter responses that are steered to the local image structure. This steering uses the structure tensor to obtain derivative responses that are either aligned with, or orthogonal to, the predominant local image structure. Analysis of the statistics of these steered filter responses in natural images leads to the model proposed here. Clique potentials are defined over steered filter responses using a Gaussian scale mixture model and are learned from training data. The SRF model connects random fields with anisotropic regularization and provides a statistical motivation for the latter. Steering the random field to the local image structure improves image denoising and inpainting performance compared with traditional pairwise MRFs.

ps

publisher site [BibTex]

publisher site [BibTex]


no image
Visual orientation and direction selectivity through thalamic synchrony

Kelly, S., Stanley, G., Jin, J., Wang, Y., Desbordes, G., Wang, Q., Black, M., Alonso, J.

2011 Abstract Viewer and Itinerary Planner, Society for Neuroscience, 2011, Online (conference)

ps

[BibTex]

[BibTex]


no image
Use of the BrainGate neural inteface system for more than five years by a woman with tetraplegia

Hochberg, L., Bacher, D., Barefoot, L., Berhanu, E., Black, M., Cash, S., Feldman, J., Gallivan, E., Homer, M., Jarosiewicz, B., King, B., Liu, J., Malik, W., Masse, N., Berge, J., Rosler, D., Schmansky, N., Simeral, J., Travers, B., Truccolo, W., Donoghue, J.

2011 Abstract Viewer and Itinerary Planner, Society for Neuroscience, 2011, Onine (conference)

ps

[BibTex]

[BibTex]


no image
Extracting 3D Structures from Biomedical Data

Xianghua Xie, Si Yong Yeo, Igor Sazonov, Perumal Nithiarasu

Proceedings of the 5th International Conference on Bioinformatics and Biomedical Engineering, 2011 (conference)

ps

[BibTex]

[BibTex]


no image
Operational Space Control of Constrained and Underactuated Systems

Mistry, M., Righetti, L.

In Proceedings of Robotics: Science and Systems, Los Angeles, CA, USA, June 2011 (inproceedings)

Abstract
The operational space formulation (Khatib, 1987), applied to rigid-body manipulators, describes how to decouple task-space and null-space dynamics, and write control equations that correspond only to forces at the end-effector or, alternatively, only to motion within the null-space. We would like to apply this useful theory to modern humanoids and other legged systems, for manipulation or similar tasks, however these systems present additional challenges due to their underactuated floating bases and contact states that can dynamically change. In recent work, Sentis et al. derived controllers for such systems by implementing a task Jacobian projected into a space consistent with the supporting constraints and underactuation (the so called "support consistent reduced Jacobian"). Here, we take a new approach to derive operational space controllers for constrained underactuated systems, by first considering the operational space dynamics within "projected inverse-dynamics" (Aghili, 2005), and subsequently resolving underactuation through the addition of dynamically consistent control torques. Doing so results in a simplified control solution compared with previous results, and importantly yields several new insights into the underlying problem of operational space control in constrained environments: 1) Underactuated systems, such as humanoid robots, cannot in general completely decouple task and null-space dynamics. However, 2) there may exist an infinite number of control solutions to realize desired task-space dynamics, and 3) these solutions involve the addition of dynamically consistent null-space motion or constraint forces (or combinations of both). In light of these findings, we present several possible control solutions, with varying optimization criteria, and highlight some of their practical consequences.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Online movement adaptation based on previous sensor experiences

Pastor, P., Righetti, L., Kalakrishnan, M., Schaal, S.

In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 365-371, IEEE, San Francisco, USA, sep 2011 (inproceedings)

Abstract
Personal robots can only become widespread if they are capable of safely operating among humans. In uncertain and highly dynamic environments such as human households, robots need to be able to instantly adapt their behavior to unforseen events. In this paper, we propose a general framework to achieve very contact-reactive motions for robotic grasping and manipulation. Associating stereotypical movements to particular tasks enables our system to use previous sensor experiences as a predictive model for subsequent task executions. We use dynamical systems, named Dynamic Movement Primitives (DMPs), to learn goal-directed behaviors from demonstration. We exploit their dynamic properties by coupling them with the measured and predicted sensor traces. This feedback loop allows for online adaptation of the movement plan. Our system can create a rich set of possible motions that account for external perturbations and perception uncertainty to generate truly robust behaviors. As an example, we present an application to grasping with the WAM robot arm.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Data-Driven Importance Distributions for Articulated Tracking
Data-Driven Importance Distributions for Articulated Tracking

Soren Hauberg, Kim S. Pedersen

In Energy Minimization Methods in Computer Vision and Pattern Recognition, 6819, pages: 287-299, Lecture Notes in Computer Science, (Editors: Boykov, Yuri and Kahl, Fredrik and Lempitsky, Victor and Schmidt, Frank), Springer Berlin Heidelberg, 2011 (inproceedings)

ps

Publishers site Code PDF Suppl. material [BibTex]

Publishers site Code PDF Suppl. material [BibTex]


A Physically Natural Metric for Human Motion and the Associated Brownian Motion Model
A Physically Natural Metric for Human Motion and the Associated Brownian Motion Model

Soren Hauberg, Kim Steenstrup Pedersen

In 1st IEEE Workshop on Kernels and Distances for Computer Vision (ICCV workshop), 2011 (inproceedings)

ps

Workshop link [BibTex]

Workshop link [BibTex]


Virtual Visual Servoing for Real-Time Robot Pose Estimation
Virtual Visual Servoing for Real-Time Robot Pose Estimation

Gratal, X., Romero, J., Kragic, D.

In International Federation of Automatic Control World Congress, IFAC, 2011 (inproceedings)

ps

Pdf [BibTex]

Pdf [BibTex]


Model-Based Pose Estimation
Model-Based Pose Estimation

Pons-Moll, G., Rosenhahn, B.

In Visual Analysis of Humans: Looking at People, pages: 139-170, 9, (Editors: T. Moeslund, A. Hilton, V. Krueger, L. Sigal), Springer, 2011 (inbook)

ps

book page pdf [BibTex]

book page pdf [BibTex]


Illumination Estimation and Cast Shadow Detection through a Higher-order Graphical Model
Illumination Estimation and Cast Shadow Detection through a Higher-order Graphical Model

Panagopoulos, A., Wang, C., Samaras, D., Paragios, N.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


Pose-invariant 3{D} Proximal Femur Estimation through Bi-Planar Image  Segmentation with Hierarchical Higher-Order Graph-based Priors
Pose-invariant 3D Proximal Femur Estimation through Bi-Planar Image Segmentation with Hierarchical Higher-Order Graph-based Priors

Wang, C., Boussaid, H., Simon, L., Lazennec, J., Paragios, N.

In International Conference, Medical Image Computing and Computer Assisted Intervention (MICCAI), 2011 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


Intrinsic Dense 3{D} Surface Tracking
Intrinsic Dense 3D Surface Tracking

Zeng, Y., Wang, C., Wang, Y., Gu, X., Samaras, D., Paragios, N.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


no image
Cooperative Localization Based on Visually Shared Objects

Lima, P., Santos, P., Oliveira, R., Ahmad, A., Santos, J.

In RoboCup 2010: Robot Soccer World Cup XIV, pages: 350-361, Lecture Notes in Computer Science ; 6556, Springer, Berlin, Germany, 14th Annual RoboCup International Symposium, 2011 (inproceedings)

Abstract
In this paper we describe a cooperative localization algorithm based on a modification of the Monte Carlo Localization algorithm where, when a robot detects it is lost, particles are spread not uniformly in the state space, but rather according to the information on the location of an object whose distance and bearing is measured by the lost robot. The object location is provided by other robots of the same team using explicit (wireless) communication. Results of application of the method to a team of real robots are presented.

ps

DOI [BibTex]

DOI [BibTex]


An Empirical Study on the Performance of Spectral Manifold Learning Techniques
An Empirical Study on the Performance of Spectral Manifold Learning Techniques

Peter Mysling, Soren Hauberg, Kim S. Pedersen

In Artificial Neural Networks and Machine Learning – ICANN 2011, 6791, pages: 347-354, Lecture Notes in Computer Science, (Editors: Honkela, Timo and Duch, Włodzisław and Girolami, Mark and Kaski, Samuel), Springer Berlin Heidelberg, 2011 (inproceedings)

ps

Publishers site PDF [BibTex]

Publishers site PDF [BibTex]


no image
Separation of visual object features and grasp strategy in primate ventral premotor cortex

Vargas-Irwin, C., Franquemont, L., Black, M., Donoghue, J.

Neural Control of Movement, 21st Annual Conference, 2011 (conference)

ps

[BibTex]

[BibTex]


Discrete Minimum Distortion Correspondence Problems for Non-rigid   Shape Matching
Discrete Minimum Distortion Correspondence Problems for Non-rigid Shape Matching

Wang, C., Bronstein, M. M., Bronstein, A. M., Paragios, N.

In International Conference on Scale Space and Variational Methods in Computer Vision (SSVM), 2011 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


Viewpoint Invariant 3{D} Landmark Model Inference from Monocular 2{D}  Images Using Higher-Order Priors
Viewpoint Invariant 3D Landmark Model Inference from Monocular 2D Images Using Higher-Order Priors

Wang, C., Zeng, Y., Simon, L., Kakadiaris, I., Samaras, D., Paragios, N.

In IEEE International Conference on Computer Vision (ICCV), 2011 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


no image
Correspondence estimation from non-rigid motion information

Wulff, J., Lotz, T., Stehle, T., Aach, T., Chase, J. G.

In Proc. SPIE, (Editors: B. M. Dawant, D. R. Haynor), SPIE, Medical Imaging: Image Processing, 2011 (inproceedings)

Abstract
The DIET (Digital Image Elasto Tomography) system is a novel approach to screen for breast cancer using only optical imaging information of the surface of a vibrating breast. 3D tracking of skin surface motion without the requirement of external markers is desirable. A novel approach to establish point correspondences using pure skin images is presented here. Instead of the intensity, motion is used as the primary feature, which can be extracted using optical flow algorithms. Taking sequences of multiple frames into account, this motion information alone is accurate and unambiguous enough to allow for a 3D reconstruction of the breast surface. Two approaches, direct and probabilistic, for this correspondence estimation are presented here, suitable for different levels of calibration information accuracy. Reconstructions show that the results obtained using these methods are comparable in accuracy to marker-based methods while considerably increasing resolution. The presented method has high potential in optical tissue deformation and motion sensing.

ps

pdf link (url) DOI [BibTex]

pdf link (url) DOI [BibTex]

1998


The Digital Office: Overview
The Digital Office: Overview

Black, M., Berard, F., Jepson, A., Newman, W., Saund, E., Socher, G., Taylor, M.

In AAAI Spring Symposium on Intelligent Environments, pages: 1-6, Stanford, March 1998 (inproceedings)

ps

pdf [BibTex]

1998


pdf [BibTex]


A framework for modeling appearance change in image sequences
A framework for modeling appearance change in image sequences

Black, M. J., Fleet, D. J., Yacoob, Y.

In Sixth International Conf. on Computer Vision, ICCV’98, pages: 660-667, Mumbai, India, January 1998 (inproceedings)

Abstract
Image "appearance" may change over time due to a variety of causes such as 1) object or camera motion; 2) generic photometric events including variations in illumination (e.g. shadows) and specular reflections; and 3) "iconic changes" which are specific to the objects being viewed and include complex occlusion events and changes in the material properties of the objects. We propose a general framework for representing and recovering these "appearance changes" in an image sequence as a "mixture" of different causes. The approach generalizes previous work on optical flow to provide a richer description of image events and more reliable estimates of image motion.

ps

pdf video [BibTex]

pdf video [BibTex]