ei
Mastakouri, A., Schölkopf, B., Janzing, D.
Selecting causal brain features with a single conditional independence test per feature
Advances in Neural Information Processing Systems 32, 33rd Annual Conference on Neural Information Processing Systems, December 2019 (conference) Accepted
ei
von Kügelgen, J., Mey, A., Loog, M., Schölkopf, B.
Semi-supervised learning, causality, and the conditional cluster assumption
NeurIPS 2019 Workshop “Do the right thing”: machine learning and causal inference for improved decision making, December 2019 (poster) Accepted
ics
Haksar, R., Solowjow, F., Trimpe, S., Schwager, M.
Controlling Heterogeneous Stochastic Growth Processes on Lattices with Limited Resources
In Proceedings of the 58th IEEE International Conference on Decision and Control (CDC) , 58th IEEE International Conference on Decision and Control (CDC), December 2019 (proceedings) Accepted
ei
von Kügelgen, J., Rubenstein, P., Schölkopf, B., Weller, A.
Optimal experimental design via Bayesian optimization: active causal structure learning for Gaussian process networks
NeurIPS 2019 Workshop “Do the right thing”: machine learning and causal inference for improved decision making, December 2019 (poster) Accepted
dlg
ics
Heim, S., Rohr, A. V., Trimpe, S., Badri-Spröwitz, A.
A Learnable Safety Measure
Conference on Robot Learning, November 2019 (conference) Accepted
ics
Baumann, D., Mager, F., Jacob, R., Thiele, L., Zimmerling, M., Trimpe, S.
Fast Feedback Control over Multi-hop Wireless Networks with Mode Changes and Stability Guarantees
ACM Transactions on Cyber-Physical Systems, 4(2):18, November 2019 (article)
pf
Ma, Z., Holle, A., Melde, K., Qiu, T., Poeppel, K., Kadiri, V., Fischer, P.
Acoustic Holographic Cell Patterning in a Biocompatible Hydrogel
Adv. Mat., October 2019 (article)
pf
Choi, E., Adams, F., Gengenbacher, A., Schlager, D., Palagi, S., Müller, P., Wetterauer, U., Miernik, A., Fischer, P., Qiu, T.
A High-Fidelity Phantom for the Simulation and Quantitative Evaluation of Transurethral Resection of the Prostate
Annals of Biomed. Eng., October 2019 (article)
pf
Fischer, P.
Interactive Materials – Drivers of Future Robotic Systems
Adv. Mat., October 2019 (article)
ei
Ozdenizci, O., Meyer, T., Wichmann, F., Peters, J., Schölkopf, B., Cetin, M., Grosse-Wentrup, M.
Neural Signatures of Motor Skill in the Resting Brain
Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC 2019), October 2019 (conference) Accepted
pf
Jeong, H., Adams, M. C., Guenther, J., Alarcon-Correa, M., Kim, I., Choi, E., Miksch, C., Mark, A. F. M., Mark, A. G., Fischer, P.
Arrays of plasmonic nanoparticle dimers with defined nanogap spacers
ACS Nano, September 2019 (article)
ei
Gebhard, T., Kilbertus, N., Harry, I., Schölkopf, B.
Convolutional neural networks: A magic bullet for gravitational-wave detection?
Physical Review D, 100(6):063015, American Physical Society, September 2019 (article)
ics
Mastrangelo, J. M., Baumann, D., Trimpe, S.
Predictive Triggering for Distributed Control of Resource Constrained Multi-agent Systems
In Proceedings of the 8th IFAC Workshop on Distributed Estimation and Control in Networked Systems, 8th IFAC Workshop on Distributed Estimation and Control in Networked Systems (NecSys), September 2019 (inproceedings)
ei
Babbar, R., Schölkopf, B.
Data scarcity, robustness and extreme multi-label classification
Machine Learning, 108(8):1329-1351, September 2019, Special Issue of the ECML PKDD 2019 Journal Track (article)
pf
Kadiri, V. M., Alarcon-Correa, M., Guenther, J. P., Ruppert, J., Bill, J., Rothenstein, D., Fischer, P.
Genetically modified M13 bacteriophage nanonets for enzyme catalysis and recovery
Catalysts, 9, pages: 723, August 2019 (article)
pf
Palagi, S., Singh, D. P., Fischer, P.
Light-controlled micromotors and soft microrobots
Adv. Opt. Mat., 7, pages: 1900370, August 2019 (article)
pf
Choi, E., Jeong, H., Qiu, T., Fischer, P., Palagi, S.
Soft Continuous Surface for Micromanipulation driven by Light-controlled Hydrogels
4th IEEE International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), July 2019 (conference)
pf
Li., D., Suarez-Ibarrola, R., Choi, E., Jeong, M., Gratzke, C., Miernik, A., Fischer, P., Qiu, T.
Soft Phantom for the Training of Renal Calculi Diagnostics and Lithotripsy
41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), July 2019 (conference)
pf
Jeong, M., Choi, E., Li., D., Palagi, S., Fischer, P., Qiu, T.
A Magnetic Actuation System for the Active Microrheology in Soft Biomaterials
4th IEEE International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), July 2019 (conference)
ei
Mastakouri, A., Schölkopf, B., Grosse-Wentrup, M.
Beta Power May Mediate the Effect of Gamma-TACS on Motor Performance
Engineering in Medicine and Biology Conference (EMBC), July 2019 (conference) Accepted
ei
Geiger, P., Besserve, M., Winkelmann, J., Proissl, C., Schölkopf, B.
Coordinating Users of Shared Facilities via Data-driven Predictive Assistants and Game Theory
Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence (UAI), pages: 49, (Editors: Amir Globerson and Ricardo Silva), AUAI Press, July 2019 (conference)
ics
Baumann, D., Solowjow, F., Johansson, K. H., Trimpe, S.
Event-triggered Pulse Control with Model Learning (if Necessary)
In Proceedings of the American Control Conference, pages: 792-797, American Control Conference (ACC), July 2019 (inproceedings)
ei
Kilbertus, N., Ball, P. J., Kusner, M. J., Weller, A., Silva, R.
The Sensitivity of Counterfactual Fairness to Unmeasured Confounding
Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence (UAI), pages: 213, (Editors: Amir Globerson and Ricardo Silva), AUAI Press, July 2019 (conference)
ei
Gresele*, L., Rubenstein*, P. K., Mehrjou, A., Locatello, F., Schölkopf, B.
The Incomplete Rosetta Stone problem: Identifiability results for Multi-view Nonlinear ICA
Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence (UAI), pages: 53, (Editors: Amir Globerson and Ricardo Silva), AUAI Press, July 2019, *equal contribution (conference)
ei
Peharz, R., Vergari, A., Stelzner, K., Molina, A., Shao, X., Trapp, M., Kersting, K., Ghahramani, Z.
Random Sum-Product Networks: A Simple and Effective Approach to Probabilistic Deep Learning
Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence (UAI), pages: 124, (Editors: Amir Globerson and Ricardo Silva), AUAI Press, July 2019 (conference)
ei
Jitkrittum*, W., Sangkloy*, P., Gondal, M. W., Raj, A., Hays, J., Schölkopf, B.
Kernel Mean Matching for Content Addressability of GANs
Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 3140-3151, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019, *equal contribution (conference)
ei
Locatello, F., Bauer, S., Lucic, M., Raetsch, G., Gelly, S., Schölkopf, B., Bachem, O.
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 4114-4124, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)
ics
Romer, A., Trimpe, S., Allgöwer, F.
Data-driven inference of passivity properties via Gaussian process optimization
In Proceedings of the European Control Conference, European Control Conference (ECC), June 2019 (inproceedings)
ics
Buisson-Fenet, M., Solowjow, F., Trimpe, S.
Actively Learning Gaussian Process Dynamics
2019 (techreport) Submitted
ei
ps
Zhang, Y., Tang, S., Muandet, K., Jarvers, C., Neumann, H.
Local Temporal Bilinear Pooling for Fine-grained Action Parsing
In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)
ei
Jitkrittum*, W., Sangkloy*, P., Gondal, M. W., Raj, A., Hays, J., Schölkopf, B.
Generate Semantically Similar Images with Kernel Mean Matching
6th Workshop Women in Computer Vision (WiCV) (oral presentation), June 2019, *equal contribution (conference) Accepted
ei
Akrour, R., Pajarinen, J., Peters, J., Neumann, G.
Projections for Approximate Policy Iteration Algorithms
Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 181-190, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)
ics
Doerr, A., Volpp, M., Toussaint, M., Trimpe, S., Daniel, C.
Trajectory-Based Off-Policy Deep Reinforcement Learning
In Proceedings of the International Conference on Machine Learning (ICML), International Conference on Machine Learning (ICML), June 2019 (inproceedings)
ei
Becker-Ehmck, P., Peters, J., van der Smagt, P.
Switching Linear Dynamics for Variational Bayes Filtering
Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 553-562, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)
ei
Suter, R., Miladinovic, D., Schölkopf, B., Bauer, S.
Robustly Disentangled Causal Mechanisms: Validating Deep Representations for Interventional Robustness
Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 6056-6065, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)
ics
Trimpe, S., Baumann, D.
Resource-aware IoT Control: Saving Communication through Predictive Triggering
IEEE Internet of Things Journal, 6(3):5013-5028, June 2019 (article)
ei
Simon-Gabriel, C., Ollivier, Y., Bottou, L., Schölkopf, B., Lopez-Paz, D.
First-Order Adversarial Vulnerability of Neural Networks and Input Dimension
Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 5809-5817, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)
ei
Ialongo, A. D., Van Der Wilk, M., Hensman, J., Rasmussen, C. E.
Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models
In Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 2931-2940, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (inproceedings)
ei
Gordon, J., Bronskill, J., Bauer, M., Nowozin, S., Turner, R.
Meta learning variational inference for prediction
7th International Conference on Learning Representations (ICLR), May 2019 (conference)
ei
Lutter, M., Ritter, C., Peters, J.
Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning
7th International Conference on Learning Representations (ICLR), May 2019 (conference)
ei
pn
Schneider, F., Balles, L., Hennig, P.
DeepOBS: A Deep Learning Optimizer Benchmark Suite
7th International Conference on Learning Representations (ICLR), May 2019 (conference)
ei
Miladinović*, D., Gondal*, M. W., Schölkopf, B., Buhmann, J. M., Bauer, S.
Disentangled State Space Models: Unsupervised Learning of Dynamics across Heterogeneous Environments
Deep Generative Models for Highly Structured Data Workshop at ICLR, May 2019, *equal contribution (conference)
ei
Fortuin, V., Hüser, M., Locatello, F., Strathmann, H., Rätsch, G.
SOM-VAE: Interpretable Discrete Representation Learning on Time Series
7th International Conference on Learning Representations (ICLR), May 2019 (conference)
ei
Bauer, M., Mnih, A.
Resampled Priors for Variational Autoencoders
22nd International Conference on Artificial Intelligence and Statistics, April 2019 (conference) Accepted
ei
von Kügelgen, J., Mey, A., Loog, M.
Semi-Generative Modelling: Covariate-Shift Adaptation with Cause and Effect Features
Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 89, pages: 1361-1369, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (conference)
ics
Mager, F., Baumann, D., Jacob, R., Thiele, L., Trimpe, S., Zimmerling, M.
Feedback Control Goes Wireless: Guaranteed Stability over Low-power Multi-hop Networks
In Proceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Systems, pages: 97-108, 10th ACM/IEEE International Conference on Cyber-Physical Systems, April 2019 (inproceedings)
ei
Mroueh, Y., Sercu, T., Raj, A.
Sobolev Descent
Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 89, pages: 2976-2985, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (conference)
ics
Mager, F., Baumann, D., Jacob, R., Thiele, L., Trimpe, S., Zimmerling, M.
Demo Abstract: Fast Feedback Control and Coordination with Mode Changes for Wireless Cyber-Physical Systems
Proceedings of the 18th ACM/IEEE Conference on Information Processing in Sensor Networks (IPSN), pages: 340-341, 18th ACM/IEEE Conference on Information Processing in Sensor Networks (IPSN), April 2019 (poster)
ei
pn
Arvanitidis, G., Hauberg, S., Hennig, P., Schober, M.
Fast and Robust Shortest Paths on Manifolds Learned from Data
Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 89, pages: 1506-1515, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (conference)
pn
ei
de Roos, F., Hennig, P.
Active Probabilistic Inference on Matrices for Pre-Conditioning in Stochastic Optimization
Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 89, pages: 1448-1457, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (conference)