Header logo is


2015


no image
Distributed Event-based State Estimation

Trimpe, S.

Max Planck Institute for Intelligent Systems, November 2015 (techreport)

Abstract
An event-based state estimation approach for reducing communication in a networked control system is proposed. Multiple distributed sensor-actuator-agents observe a dynamic process and sporadically exchange their measurements and inputs over a bus network. Based on these data, each agent estimates the full state of the dynamic system, which may exhibit arbitrary inter-agent couplings. Local event-based protocols ensure that data is transmitted only when necessary to meet a desired estimation accuracy. This event-based scheme is shown to mimic a centralized Luenberger observer design up to guaranteed bounds, and stability is proven in the sense of bounded estimation errors for bounded disturbances. The stability result extends to the distributed control system that results when the local state estimates are used for distributed feedback control. Simulation results highlight the benefit of the event-based approach over classical periodic ones in reducing communication requirements.

am ics

arXiv [BibTex]

2015


arXiv [BibTex]


Automatic LQR Tuning Based on Gaussian Process Optimization: Early Experimental Results
Automatic LQR Tuning Based on Gaussian Process Optimization: Early Experimental Results

Marco, A., Hennig, P., Bohg, J., Schaal, S., Trimpe, S.

Machine Learning in Planning and Control of Robot Motion Workshop at the IEEE/RSJ International Conference on Intelligent Robots and Systems (iROS), pages: , , Machine Learning in Planning and Control of Robot Motion Workshop, October 2015 (conference)

Abstract
This paper proposes an automatic controller tuning framework based on linear optimal control combined with Bayesian optimization. With this framework, an initial set of controller gains is automatically improved according to a pre-defined performance objective evaluated from experimental data. The underlying Bayesian optimization algorithm is Entropy Search, which represents the latent objective as a Gaussian process and constructs an explicit belief over the location of the objective minimum. This is used to maximize the information gain from each experimental evaluation. Thus, this framework shall yield improved controllers with fewer evaluations compared to alternative approaches. A seven-degree-of-freedom robot arm balancing an inverted pole is used as the experimental demonstrator. Preliminary results of a low-dimensional tuning problem highlight the method’s potential for automatic controller tuning on robotic platforms.

am ei ics pn

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
Assessing human-human therapy kinematics for retargeting to human-robot therapy

Johnson, M. J., Christopher, S. M., Mohan, M., Mendonca, R.

In Proceedings of the IEEE International Conference on Rehabilitation Robotics (ICORR), Singapore, August 2015 (inproceedings)

Abstract
In this paper, we present experiments examining the accuracy of data collected from a Kinect sensor for capturing close interactive actions of a therapist with a patient during stroke rehabilitation. Our long-term goal is to map human-human interactions such as these patient-therapist ones onto human-robot interactions. In many robot interaction scenarios, the robot does not mimic interaction between two or more humans, which is a major part of stroke therapy. The Kinect works for functional tasks such as a reaching task where the interaction to be retargeted by the robot is minimal to none; though this data is not good for a functional task involving touching another person. We demonstrate that the noisy data from Kinect does not produce a system robust enough to be for remapping to a humanoid robot a therapit's movements when in contact with a person.

hi

DOI [BibTex]

DOI [BibTex]


Direct Loss Minimization Inverse Optimal Control
Direct Loss Minimization Inverse Optimal Control

Doerr, A., Ratliff, N., Bohg, J., Toussaint, M., Schaal, S.

In Proceedings of Robotics: Science and Systems, Rome, Italy, Robotics: Science and Systems XI, July 2015 (inproceedings)

Abstract
Inverse Optimal Control (IOC) has strongly impacted the systems engineering process, enabling automated planner tuning through straightforward and intuitive demonstration. The most successful and established applications, though, have been in lower dimensional problems such as navigation planning where exact optimal planning or control is feasible. In higher dimensional systems, such as humanoid robots, research has made substantial progress toward generalizing the ideas to model free or locally optimal settings, but these systems are complicated to the point where demonstration itself can be difficult. Typically, real-world applications are restricted to at best noisy or even partial or incomplete demonstrations that prove cumbersome in existing frameworks. This work derives a very flexible method of IOC based on a form of Structured Prediction known as Direct Loss Minimization. The resulting algorithm is essentially Policy Search on a reward function that rewards similarity to demonstrated behavior (using Covariance Matrix Adaptation (CMA) in our experiments). Our framework blurs the distinction between IOC, other forms of Imitation Learning, and Reinforcement Learning, enabling us to derive simple, versatile, and practical algorithms that blend imitation and reinforcement signals into a unified framework. Our experiments analyze various aspects of its performance and demonstrate its efficacy on conveying preferences for motion shaping and combined reach and grasp quality optimization.

am ics

PDF Video Project Page [BibTex]

PDF Video Project Page [BibTex]


no image
LMI-Based Synthesis for Distributed Event-Based State Estimation

Muehlebach, M., Trimpe, S.

In Proceedings of the American Control Conference, July 2015 (inproceedings)

Abstract
This paper presents an LMI-based synthesis procedure for distributed event-based state estimation. Multiple agents observe and control a dynamic process by sporadically exchanging data over a broadcast network according to an event-based protocol. In previous work [1], the synthesis of event-based state estimators is based on a centralized design. In that case three different types of communication are required: event-based communication of measurements, periodic reset of all estimates to their joint average, and communication of inputs. The proposed synthesis problem eliminates the communication of inputs as well as the periodic resets (under favorable circumstances) by accounting explicitly for the distributed structure of the control system.

am ics

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
Guaranteed H2 Performance in Distributed Event-Based State Estimation

Muehlebach, M., Trimpe, S.

In Proceeding of the First International Conference on Event-based Control, Communication, and Signal Processing, June 2015 (inproceedings)

am ics

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
On the Choice of the Event Trigger in Event-based Estimation

Trimpe, S., Campi, M.

In Proceeding of the First International Conference on Event-based Control, Communication, and Signal Processing, June 2015 (inproceedings)

am ics

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
Toward a large-scale visuo-haptic dataset for robotic learning

Burka, A., Hu, S., Krishnan, S., Kuchenbecker, K. J., Hendricks, L. A., Gao, Y., Darrell, T.

In Proc. CVPR Workshop on the Future of Datasets in Vision, 2015 (inproceedings)

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Detecting Lumps in Simulated Tissue via Palpation with a BioTac

Hui, J., Block, A., Kuchenbecker, K. J.

In Proc. IEEE World Haptics Conference, 2015, Work-in-progress paper. Poster presentation given by Hui (inproceedings)

hi

[BibTex]

[BibTex]


no image
Analysis of the Instrument Vibrations and Contact Forces Caused by an Expert Robotic Surgeon Doing FRS Tasks

Brown, J. D., O’Brien, C., Miyasaka, K., Dumon, K. R., Kuchenbecker, K. J.

In Proc. Hamlyn Symposium on Medical Robotics, pages: 75-76, London, England, June 2015, Poster presentation given by Brown (inproceedings)

hi

[BibTex]

[BibTex]


no image
Should Haptic Texture Vibrations Respond to User Force and Speed?

Culbertson, H., Kuchenbecker, K. J.

In IEEE World Haptics Conference, pages: 106 - 112, Evanston, Illinois, USA, June 2015, Oral presentation given by Culbertson (inproceedings)

hi

[BibTex]

[BibTex]


no image
Enabling the Baxter Robot to Play Hand-Clapping Games

Fitter, N. T., Neuburger, M., Kuchenbecker, K. J.

In Proc. IEEE World Haptics Conference, June 2015, Work-in-progress paper. Poster presentation given by Fitter (inproceedings)

hi

[BibTex]

[BibTex]


no image
Event-based Estimation and Control for Remote Robot Operation with Reduced Communication

Trimpe, S., Buchli, J.

In Proceedings of the IEEE International Conference on Robotics and Automation, May 2015 (inproceedings)

Abstract
An event-based communication framework for remote operation of a robot via a bandwidth-limited network is proposed. The robot sends state and environment estimation data to the operator, and the operator transmits updated control commands or policies to the robot. Event-based communication protocols are designed to ensure that data is transmitted only when required: the robot sends new estimation data only if this yields a significant information gain at the operator, and the operator transmits an updated control policy only if this comes with a significant improvement in control performance. The developed framework is modular and can be used with any standard estimation and control algorithms. Simulation results of a robotic arm highlight its potential for an efficient use of limited communication resources, for example, in disaster response scenarios such as the DARPA Robotics Challenge.

am ics

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
Using IMU Data to Teach a Robot Hand-Clapping Games

Fitter, N. T., Kuchenbecker, K. J.

In Proc. IEEE Haptics Symposium, pages: 353-355, April 2015, Work-in-progress paper. Poster presentation given by Fitter (inproceedings)

hi

[BibTex]

[BibTex]


no image
Haptic Feedback in Transoral Robotic Surgery: A Feasibility Study

Bur, A. M., Gomez, E. D., Rassekh, C. H., Newman, J. G., Weinstein, G. S., Kuchenbecker, K. J.

In Proc. Annual Meeting of the Triological Society at COSM, April 2015, Poster presentation given by Bur (inproceedings)

hi

[BibTex]

[BibTex]


no image
Human Machine Interface for Dexto Eka: - The humanoid robot

Kumra, S., Mohan, M., Gupta, S., Vaswani, H.

In Proceedings of the IEEE International Conference on Robotics, Automation, Control and Embedded Systems (RACE), Chennai, India, Febuary 2015 (inproceedings)

Abstract
This paper illustrates hybrid control system of the humanoid robot, Dexto:Eka: focusing on the dependent or slave mode. Efficiency of any system depends on the fluid operation of its control system. Here, we elucidate the control of 12 DoF robotic arms and an omnidirectional mecanum wheel drive using an exo-frame, and a Graphical User Interface (GUI) and a control column. This paper comprises of algorithms, control mechanisms and overall flow of execution for the regulation of robotic arms, graphical user interface and locomotion.

hi

DOI [BibTex]

DOI [BibTex]


no image
Conception and development of Dexto:Eka: The Humanoid Robot - Part IV

Kumra, S., Mohan, M., Vaswani, H., Gupta, S.

In Proceedings of the IEEE International Conference on Robotics, Automation, Control and Embedded Systems (RACE), Febuary 2015 (inproceedings)

Abstract
This paper elucidates the fourth phase of the development of `Dexto:Eka: - The Humanoid Robot'. It lays special emphasis on the conception of the locomotion drive and the development of vision based system that aids navigation and tele-operation. The first three phases terminated with the completion of two robotic arms with six degrees of freedom each, structural development and the creation of a human machine interface that included an exo-frame, a control column and a graphical user interface. This phase also involved the enhancement of the exo-frame to a vision based system using a Kinect camera. The paper also focuses on the reasons behind choosing the locomotion drive and the benefits it has.

hi

DOI [BibTex]

DOI [BibTex]


no image
Design and Validation of a Practical Simulator for Transoral Robotic Surgery

Bur, A. M., Gomez, E. D., Chalian, A. A., Newman, J. G., Weinstein, G. S., Kuchenbecker, K. J.

In Proc. Society for Robotic Surgery Annual Meeting: Transoral Program, (T8), February 2015, Oral presentation given by Bur (inproceedings)

hi

[BibTex]

[BibTex]


no image
A New Perspective and Extension of the Gaussian Filter

Wüthrich, M., Trimpe, S., Kappler, D., Schaal, S.

In Robotics: Science and Systems, 2015 (inproceedings)

Abstract
The Gaussian Filter (GF) is one of the most widely used filtering algorithms; instances are the Extended Kalman Filter, the Unscented Kalman Filter and the Divided Difference Filter. GFs represent the belief of the current state by a Gaussian with the mean being an affine function of the measurement. We show that this representation can be too restrictive to accurately capture the dependencies in systems with nonlinear observation models, and we investigate how the GF can be generalized to alleviate this problem. To this end we view the GF from a variational-inference perspective, and analyze how restrictions on the form of the belief can be relaxed while maintaining simplicity and efficiency. This analysis provides a basis for generalizations of the GF. We propose one such generalization which coincides with a GF using a virtual measurement, obtained by applying a nonlinear function to the actual measurement. Numerical experiments show that the proposed Feature Gaussian Filter (FGF) can have a substantial performance advantage over the standard GF for systems with nonlinear observation models.

am ics

Web PDF Project Page [BibTex]

2011


no image
Planning manipulation and grasping tasks with a redundant arm

Gray, S. R., Romano, J. M., Brindza, J., Kim, S., Kuchenbecker, K. J., Kumar, V.

In Proc. ASME International Design Engineering Technical Conferences, Washington, D.C., USA, 2011, DETC2011-47453. Oral presentation given by Gray (inproceedings)

hi

[BibTex]

2011


[BibTex]


no image
Lessons in Using Vibrotactile Feedback to Guide Fast Arm Motions

Bark, K., Khanna, P., Irwin, R., Kapur, P., Jax, S. A., Buxbaum, L. J., Kuchenbecker, K. J.

In Proc. IEEE World Haptics Conference, pages: 355-360, Istanbul, Turkey, June 2011, Poster presentation given by Bark (inproceedings)

hi

[BibTex]

[BibTex]


no image
Haptically Assisted Golf Putting Through a Planar Four-Cable System

Huang, P. Y., Kunkel, J. A., Brindza, J., Kuchenbecker, K. J.

In Proc. IEEE World Haptics Conference, pages: 191-196, Istanbul, Turkey, June 2011, Poster presentation given by Kuchenbecker (inproceedings)

hi

[BibTex]

[BibTex]


no image
Design of Body-Grounded Tactile Actuators for Playback of Human Physical Contact

Stanley, A. A., Kuchenbecker, K. J.

In Proc. IEEE World Haptics Conference, pages: 563-568, Istanbul, Turkey, June 2011, Poster presentation given by Stanley (inproceedings)

hi

[BibTex]

[BibTex]


no image
Tool Vibration Feedback May Help Expert Robotic Surgeons Apply Less Force During Manipulation Tasks

McMahan, W., Bark, K., Gewirtz, J., Standish, D., Martin, P. D., Kunkel, J. A., Lilavois, M., Wedmid, A., Lee, D. I., Kuchenbecker, K. J.

In Proc. Hamlyn Symposium on Medical Robotics, pages: 37-38, London, England, June 2011, Oral Presentation given by Kuchenbecker (inproceedings)

hi

[BibTex]

[BibTex]


no image
An Experimental Demonstration of a Distributed and Event-based State Estimation Algorithm

(Best Interactive Paper Award (top out of 450))

Trimpe, S., D’Andrea, R.

In Proceedings of the 18th IFAC World Congress, 2011 (inproceedings)

am ics

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Reduced Communication State Estimation for Control of an Unstable Networked Control System

Trimpe, S., D’Andrea, R.

In Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, 2011 (inproceedings)

am ics

PDF Supplementary material DOI [BibTex]

PDF Supplementary material DOI [BibTex]


no image
Haptography: Capturing and Recreating the Rich Feel of Real Surfaces

Kuchenbecker, K. J., Romano, J. M., McMahan, W.

In Proceedings of the International Symposium on Robotics Research (ISRR), 70, pages: 245-260, Springer Tracts in Advanced Robotics, Springer, 2011, Oral presentation given by Kuchenbecker in August of 2009 (inproceedings)

hi

[BibTex]

[BibTex]