Header logo is


2020


no image
Dynamic Analysis of Doubly Curved Composite Panels Using Lamination Parameters and Spectral-Tchebychev Method

Serhat, G., Anamagh, M. R., Bediz, B., Basdogan, I.

Computers & Structures, 239, pages: 106294, October 2020 (article)

Abstract
Efficient modeling and optimization techniques are required to overcome the high design complexity and computational costs concerning the engineering of composite structures. In this paper, a modeling framework for the dynamic analysis of doubly curved composite panels is developed. Lamination parameters are used to characterize the stiffness properties of the laminate, and the responses are calculated through the two-dimensional spectral-Tchebychev method. The proposed framework combines the computational efficiency advantages of both lamination parameters formulation and spectral-Tchebychev method which is extended for dynamic analysis of curved composite laminates. Compared to the finite element method, the developed model significantly decreases the computation duration, thereby leading to analysis speed-ups up to 40 folds. In the case studies, fundamental frequency contours for the doubly curved composite panels are obtained in lamination parameters space for the first time. The results show that, unlike flat or singly curved laminates, the maximum frequency design points for doubly curved panels can be inside the feasible region of lamination parameters requiring multiple layer angles. The fundamental mode shapes for the maximum frequency designs are also computed to investigate the influence of panel curvatures on the vibration patterns, which can exhibit mode switching phenomenon.

hi

DOI [BibTex]

2020


DOI [BibTex]


no image
Unifying Lamination Parameters with Spectral-Tchebychev Method for Variable-Stiffness Composite Plate Design

Serhat, G., Bediz, B., Basdogan, I.

Composite Structures, 242(112183), June 2020 (article)

Abstract
This paper describes an efficient framework for the design and optimization of the variable-stiffness composite plates. Equations of motion are solved using a Tchebychev polynomials-based spectral modeling approach that is extended for the classical laminated plate theory. This approach provides highly significant analysis speed-ups with respect to the conventional finite element method. The proposed framework builds on a variable-stiffness laminate design methodology that utilizes lamination parameters for representing the stiffness properties compactly and master node variables for modeling the stiffness variation through distance-based interpolation. The current study improves the existing method by optimizing the locations of the master nodes in addition to their lamination parameter values. The optimization process is promoted by the computationally efficient spectral-Tchebychev solution method. Case studies are performed for maximizing the fundamental frequencies of the plates with different boundary conditions and aspect ratios. The results show that significant improvements can be rapidly achieved compared to optimal constant-stiffness designs by utilizing the developed framework. In addition, the optimization of master node locations resulted in additional improvements in the optimal response values highlighting the importance of including the node positions within the design variables.

hi

DOI [BibTex]

DOI [BibTex]


no image
Automatic Discovery of Interpretable Planning Strategies

Skirzyński, J., Becker, F., Lieder, F.

Machine Learning Journal, May 2020 (article) Submitted

Abstract
When making decisions, people often overlook critical information or are overly swayed by irrelevant information. A common approach to mitigate these biases is to provide decisionmakers, especially professionals such as medical doctors, with decision aids, such as decision trees and flowcharts. Designing effective decision aids is a difficult problem. We propose that recently developed reinforcement learning methods for discovering clever heuristics for good decision-making can be partially leveraged to assist human experts in this design process. One of the biggest remaining obstacles to leveraging the aforementioned methods for improving human decision-making is that the policies they learn are opaque to people. To solve this problem, we introduce AI-Interpret: a general method for transforming idiosyncratic policies into simple and interpretable descriptions. Our algorithm combines recent advances in imitation learning and program induction with a new clustering method for identifying a large subset of demonstrations that can be accurately described by a simple, high-performing decision rule. We evaluate our new AI-Interpret algorithm and employ it to translate information-acquisition policies discovered through metalevel reinforcement learning. The results of three large behavioral experiments showed that the provision of decision rules as flowcharts significantly improved people’s planning strategies and decisions across three different classes of sequential decision problems. Furthermore, a series of ablation studies confirmed that our AI-Interpret algorithm was critical to the discovery of interpretable decision rules and that it is ready to be applied to other reinforcement learning problems. We conclude that the methods and findings presented in this article are an important step towards leveraging automatic strategy discovery to improve human decision-making.

re

Automatic Discovery of Interpretable Planning Strategies The code for our algorithm and the experiments is available Project Page [BibTex]


Physical Variables Underlying Tactile Stickiness during Fingerpad Detachment
Physical Variables Underlying Tactile Stickiness during Fingerpad Detachment

Nam, S., Vardar, Y., Gueorguiev, D., Kuchenbecker, K. J.

Frontiers in Neuroscience, 14(235):1-14, April 2020 (article)

Abstract
One may notice a relatively wide range of tactile sensations even when touching the same hard, flat surface in similar ways. Little is known about the reasons for this variability, so we decided to investigate how the perceptual intensity of light stickiness relates to the physical interaction between the skin and the surface. We conducted a psychophysical experiment in which nine participants actively pressed their finger on a flat glass plate with a normal force close to 1.5 N and detached it after a few seconds. A custom-designed apparatus recorded the contact force vector and the finger contact area during each interaction as well as pre- and post-trial finger moisture. After detaching their finger, participants judged the stickiness of the glass using a nine-point scale. We explored how sixteen physical variables derived from the recorded data correlate with each other and with the stickiness judgments of each participant. These analyses indicate that stickiness perception mainly depends on the pre-detachment pressing duration, the time taken for the finger to detach, and the impulse in the normal direction after the normal force changes sign; finger-surface adhesion seems to build with pressing time, causing a larger normal impulse during detachment and thus a more intense stickiness sensation. We additionally found a strong between-subjects correlation between maximum real contact area and peak pull-off force, as well as between finger moisture and impulse.

hi

link (url) DOI Project Page [BibTex]


no image
Advancing Rational Analysis to the Algorithmic Level

Lieder, F., Griffiths, T. L.

Behavioral and Brain Sciences, 43, E27, March 2020 (article)

Abstract
The commentaries raised questions about normativity, human rationality, cognitive architectures, cognitive constraints, and the scope or resource rational analysis (RRA). We respond to these questions and clarify that RRA is a methodological advance that extends the scope of rational modeling to understanding cognitive processes, why they differ between people, why they change over time, and how they could be improved.

re

Advancing rational analysis to the algorithmic level DOI [BibTex]

Advancing rational analysis to the algorithmic level DOI [BibTex]


no image
Learning to Overexert Cognitive Control in a Stroop Task

Bustamante, L., Lieder, F., Musslick, S., Shenhav, A., Cohen, J.

Febuary 2020, Laura Bustamante and Falk Lieder contributed equally to this publication. (article) In revision

Abstract
How do people learn when to allocate how much cognitive control to which task? According to the Learned Value of Control (LVOC) model, people learn to predict the value of alternative control allocations from features of a given situation. This suggests that people may generalize the value of control learned in one situation to other situations with shared features, even when the demands for cognitive control are different. This makes the intriguing prediction that what a person learned in one setting could, under some circumstances, cause them to misestimate the need for, and potentially over-exert control in another setting, even if this harms their performance. To test this prediction, we had participants perform a novel variant of the Stroop task in which, on each trial, they could choose to either name the color (more control-demanding) or read the word (more automatic). However only one of these tasks was rewarded, it changed from trial to trial, and could be predicted by one or more of the stimulus features (the color and/or the word). Participants first learned colors that predicted the rewarded task. Then they learned words that predicted the rewarded task. In the third part of the experiment, we tested how these learned feature associations transferred to novel stimuli with some overlapping features. The stimulus-task-reward associations were designed so that for certain combinations of stimuli the transfer of learned feature associations would incorrectly predict that more highly rewarded task would be color naming, which would require the exertion of control, even though the actually rewarded task was word reading and therefore did not require the engagement of control. Our results demonstrated that participants over-exerted control for these stimuli, providing support for the feature-based learning mechanism described by the LVOC model.

re

Learning to Overexert Cognitive Control in a Stroop Task DOI [BibTex]

Learning to Overexert Cognitive Control in a Stroop Task DOI [BibTex]


Learning to Predict Perceptual Distributions of Haptic Adjectives
Learning to Predict Perceptual Distributions of Haptic Adjectives

Richardson, B. A., Kuchenbecker, K. J.

Frontiers in Neurorobotics, 13(116):1-16, Febuary 2020 (article)

Abstract
When humans touch an object with their fingertips, they can immediately describe its tactile properties using haptic adjectives, such as hardness and roughness; however, human perception is subjective and noisy, with significant variation across individuals and interactions. Recent research has worked to provide robots with similar haptic intelligence but was focused on identifying binary haptic adjectives, ignoring both attribute intensity and perceptual variability. Combining ordinal haptic adjective labels gathered from human subjects for a set of 60 objects with features automatically extracted from raw multi-modal tactile data collected by a robot repeatedly touching the same objects, we designed a machine-learning method that incorporates partial knowledge of the distribution of object labels into training; then, from a single interaction, it predicts a probability distribution over the set of ordinal labels. In addition to analyzing the collected labels (10 basic haptic adjectives) and demonstrating the quality of our method's predictions, we hold out specific features to determine the influence of individual sensor modalities on the predictive performance for each adjective. Our results demonstrate the feasibility of modeling both the intensity and the variation of haptic perception, two crucial yet previously neglected components of human haptic perception.

hi

DOI Project Page [BibTex]


no image
Exercising with Baxter: Preliminary Support for Assistive Social-Physical Human-Robot Interaction

Fitter, N. T., Mohan, M., Kuchenbecker, K. J., Johnson, M. J.

Journal of NeuroEngineering and Rehabilitation, 17(19), Febuary 2020 (article)

Abstract
Background: The worldwide population of older adults will soon exceed the capacity of assisted living facilities. Accordingly, we aim to understand whether appropriately designed robots could help older adults stay active at home. Methods: Building on related literature as well as guidance from experts in game design, rehabilitation, and physical and occupational therapy, we developed eight human-robot exercise games for the Baxter Research Robot, six of which involve physical human-robot contact. After extensive iteration, these games were tested in an exploratory user study including 20 younger adult and 20 older adult users. Results: Only socially and physically interactive games fell in the highest ranges for pleasantness, enjoyment, engagement, cognitive challenge, and energy level. Our games successfully spanned three different physical, cognitive, and temporal challenge levels. User trust and confidence in Baxter increased significantly between pre- and post-study assessments. Older adults experienced higher exercise, energy, and engagement levels than younger adults, and women rated the robot more highly than men on several survey questions. Conclusions: The results indicate that social-physical exercise with a robot is more pleasant, enjoyable, engaging, cognitively challenging, and energetic than similar interactions that lack physical touch. In addition to this main finding, researchers working in similar areas can build on our design practices, our open-source resources, and the age-group and gender differences that we found.

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Compensating for Fingertip Size to Render Tactile Cues More Accurately
Compensating for Fingertip Size to Render Tactile Cues More Accurately

Young, E. M., Gueorguiev, D., Kuchenbecker, K. J., Pacchierotti, C.

IEEE Transactions on Haptics, 13(1):144-151, January 2020, Katherine J. Kuchenbecker and Claudio Pacchierotti contributed equally to this publication. (article)

Abstract
Fingertip haptic feedback offers advantages in many applications, including robotic teleoperation, gaming, and training. However, fingertip size and shape vary significantly across humans, making it difficult to design fingertip interfaces and rendering techniques suitable for everyone. This article starts with an existing data-driven haptic rendering algorithm that ignores fingertip size, and it then develops two software-based approaches to personalize this algorithm for fingertips of different sizes using either additional data or geometry. We evaluate our algorithms in the rendering of pre-recorded tactile sensations onto rubber casts of six different fingertips as well as onto the real fingertips of 13 human participants. Results on the casts show that both approaches significantly improve performance, reducing force error magnitudes by an average of 78% with respect to the standard non-personalized rendering technique. Congruent results were obtained for real fingertips, with subjects rating each of the two personalized rendering techniques significantly better than the standard non-personalized method.

hi

DOI [BibTex]

DOI [BibTex]


Toward a Formal Theory of Proactivity
Toward a Formal Theory of Proactivity

Lieder, F., Iwama, G.

January 2020 (article) Submitted

Abstract
Beyond merely reacting to their environment and impulses, people have the remarkable capacity to proactively set and pursue their own goals. But the extent to which they leverage this capacity varies widely across people and situations. The goal of this article is to make the mechanisms and variability of proactivity more amenable to rigorous experiments and computational modeling. We proceed in three steps. First, we develop and validate a mathematically precise behavioral measure of proactivity and reactivity that can be applied across a wide range of experimental paradigms. Second, we propose a formal definition of proactivity and reactivity, and develop a computational model of proactivity in the AX Continuous Performance Task (AX-CPT). Third, we develop and test a computational-level theory of meta-control over proactivity in the AX-CPT that identifies three distinct meta-decision-making problems: intention setting, resolving response conflict between intentions and automaticity, and deciding whether to recall context and intentions into working memory. People's response frequencies in the AX-CPT were remarkably well captured by a mixture between the predictions of our models of proactive and reactive control. Empirical data from an experiment varying the incentives and contextual load of an AX-CPT confirmed the predictions of our meta-control model of individual differences in proactivity. Our results suggest that proactivity can be understood in terms of computational models of meta-control. Our model makes additional empirically testable predictions. Future work will extend our models from proactive control in the AX-CPT to proactive goal creation and goal pursuit in the real world.

re

Toward a formal theory of proactivity DOI Project Page [BibTex]


Resource-Rational Models of Human Goal Pursuit
Resource-Rational Models of Human Goal Pursuit

Prystawski, B., Mohnert, F., Tošić, M., Lieder, F.

2020 (article)

Abstract
Goal-directed behaviour is a deeply important part of human psychology. People constantly set goals for themselves and pursue them in many domains of life. In this paper, we develop computational models that characterize how humans pursue goals in a complex dynamic environment and test how well they describe human behaviour in an experiment. Our models are motivated by the principle of resource rationality and draw upon psychological insights about people's limited attention and planning capacities. We found that human goal pursuit is qualitatively different and substantially less efficient than optimal goal pursuit. Models of goal pursuit based on the principle of resource rationality captured human behavior better than both a model of optimal goal pursuit and heuristics that are not resource-rational. We conclude that human goal pursuit is jointly shaped by its function, the structure of the environment, and cognitive costs and constraints on human planning and attention. Our findings are an important step toward understanding humans goal pursuit, as cognitive limitations play a crucial role in shaping people's goal-directed behaviour.

re

Resource-rational models of human goal pursuit DOI [BibTex]


Getting in Touch with Children with Autism: Specialist Guidelines for a Touch-Perceiving Robot
Getting in Touch with Children with Autism: Specialist Guidelines for a Touch-Perceiving Robot

Burns, R. B., Seifi, H., Lee, H., Kuchenbecker, K. J.

Paladyn. Journal of Behavioral Robotics, 2020 (article) Accepted

Abstract
Children with autism need innovative solutions that help them learn to master everyday experiences and cope with stressful situations. We propose that socially assistive robot companions could better understand and react to a child’s needs if they utilized tactile sensing. We examined the existing relevant literature to create an initial set of six tactile-perception requirements, and we then evaluated these requirements through interviews with 11 experienced autism specialists from a variety of backgrounds. Thematic analysis of the comments shared by the specialists revealed three overarching themes: the touch-seeking and touch-avoiding behavior of autistic children, their individual differences and customization needs, and the roles that a touch-perceiving robot could play in such interactions. Using the interview study feedback, we refined our initial list into seven qualitative requirements that describe robustness and maintainability, sensing range, feel, gesture identification, spatial, temporal, and adaptation attributes for the touch-perception system of a robot companion for children with autism. Lastly, by utilizing the literature and current best practices in tactile sensor development and signal processing, we transformed these qualitative requirements into quantitative specifications. We discuss the implications of these requirements for future HRI research in the sensing, computing, and user research communities.

hi

Project Page [BibTex]

2019


no image
A semi-analytical model for dynamic analysis of non-uniform plates

Gozum, M. M., Serhat, G., Basdogan, I.

Applied Mathematical Modelling, 76, pages: 883–899, December 2019 (article)

Abstract
Dynamic properties of the plate structures can be enhanced by introducing discontinuities of different kinds such as using surface-bonded discrete patches or spatially varying the stiffness and mass properties of the plate. Fast and reliable design of such complex structures requires efficient and accurate modeling tools. In this study, a novel semi-analytical model is developed for the dynamic analysis of plates having discrete and/or continuous non-uniformities. Two-dimensional Heaviside unit step functions are utilized to represent the discontinuities. Different from existing numerical methods based on Heaviside functions, a numerical technique is proposed for modeling the discontinuities that are not necessarily aligned with the plate axes. The governing equations are derived using Hamilton's principle and Rayleigh–Ritz method is used for determining the modal variables. The surface-bonded patches are used to demonstrate discrete non-uniformities where variable-stiffness laminates are selected to represent continuous non-uniform structures. Natural frequencies and mode shapes obtained using the proposed method are validated with finite element analyses and the existing results from the literature. The results show that the developed model performs accurately and efficiently.

hi

DOI [BibTex]

2019


DOI [BibTex]


A Robotic Framework to Facilitate Sensory Experiences for Children with Autism Spectrum Disorder: A Preliminary Study
A Robotic Framework to Facilitate Sensory Experiences for Children with Autism Spectrum Disorder: A Preliminary Study

Javed, H., Burns, R., Jeong, M., Howard, A. M., Park, C. H.

ACM Transactions on Human-Robot Interaction (THRI), 9(1), December 2019 (article)

Abstract
The diagnosis of Autism Spectrum Disorder (ASD) in children is commonly accompanied by a diagnosis of sensory processing disorders. Abnormalities are usually reported in multiple sensory processing domains, showing a higher prevalence of unusual responses, particularly to tactile, auditory, and visual stimuli. This article discusses a novel robot-based framework designed to target sensory difficulties faced by children with ASD in a controlled setting. The setup consists of a number of sensory stations, together with two different robotic agents that navigate the stations and interact with the stimuli. These stimuli are designed to resemble real-world scenarios that form a common part of one’s everyday experiences. Given the strong interest of children with ASD in technology in general and robots in particular, we attempt to utilize our robotic platform to demonstrate socially acceptable responses to the stimuli in an interactive, pedagogical setting that encourages the child’s social, motor, and vocal skills, while providing a diverse sensory experience. A preliminary user study was conducted to evaluate the efficacy of the proposed framework, with a total of 18 participants (5 with ASD and 13 typically developing) between the ages of 4 and 12 years. We derive a measure of social engagement, based on which we evaluate the effectiveness of the robots and sensory stations to identify key design features that can improve social engagement in children.

hi

DOI [BibTex]

DOI [BibTex]


no image
Hierarchical Task-Parameterized Learning from Demonstration for Collaborative Object Movement

Hu, S., Kuchenbecker, K. J.

Applied Bionics and Biomechanics, (9765383), December 2019 (article)

Abstract
Learning from demonstration (LfD) enables a robot to emulate natural human movement instead of merely executing preprogrammed behaviors. This article presents a hierarchical LfD structure of task-parameterized models for object movement tasks, which are ubiquitous in everyday life and could benefit from robotic support. Our approach uses the task-parameterized Gaussian mixture model (TP-GMM) algorithm to encode sets of demonstrations in separate models that each correspond to a different task situation. The robot then maximizes its expected performance in a new situation by either selecting a good existing model or requesting new demonstrations. Compared to a standard implementation that encodes all demonstrations together for all test situations, the proposed approach offers four advantages. First, a simply defined distance function can be used to estimate test performance by calculating the similarity between a test situation and the existing models. Second, the proposed approach can improve generalization, e.g., better satisfying the demonstrated task constraints and speeding up task execution. Third, because the hierarchical structure encodes each demonstrated situation individually, a wider range of task situations can be modeled in the same framework without deteriorating performance. Last, adding or removing demonstrations incurs low computational load, and thus, the robot’s skill library can be built incrementally. We first instantiate the proposed approach in a simulated task to validate these advantages. We then show that the advantages transfer to real hardware for a task where naive participants collaborated with a Willow Garage PR2 robot to move a handheld object. For most tested scenarios, our hierarchical method achieved significantly better task performance and subjective ratings than both a passive model with only gravity compensation and a single TP-GMM encoding all demonstrations.

hi

DOI [BibTex]


Life Improvement Science: A Manifesto
Life Improvement Science: A Manifesto

Lieder, F.

December 2019 (article) In revision

Abstract
Rapid technological advances present unprecedented opportunities for helping people thrive. This manifesto presents a road map for establishing a solid scientific foundation upon which those opportunities can be realized. It highlights fundamental open questions about the cognitive underpinnings of effective living and how they can be improved, supported, and augmented. These questions are at the core of my proposal for a new transdisciplinary research area called life improvement science. Recent advances have made these questions amenable to scientific rigor, and emerging approaches are paving the way towards practical strategies, clever interventions, and (intelligent) apps for empowering people to reach unprecedented levels of personal effectiveness and wellbeing.

re

Life improvement science: a manifesto DOI [BibTex]


no image
Doing More with Less: Meta-Reasoning and Meta-Learning in Humans and Machines

Griffiths, T. L., Callaway, F., Chang, M. B., Grant, E., Krueger, P. M., Lieder, F.

Current Opinion in Behavioral Sciences, 29, pages: 24-30, October 2019 (article)

Abstract
Artificial intelligence systems use an increasing amount of computation and data to solve very specific problems. By contrast, human minds solve a wide range of problems using a fixed amount of computation and limited experience. We identify two abilities that we see as crucial to this kind of general intelligence: meta-reasoning (deciding how to allocate computational resources) and meta-learning (modeling the learning environment to make better use of limited data). We summarize the relevant AI literature and relate the resulting ideas to recent work in psychology.

re

DOI [BibTex]

DOI [BibTex]


no image
Multi-objective optimization of composite plates using lamination parameters

Serhat, G., Basdogan, I.

Materials & Design, 180(107904), October 2019 (article)

Abstract
Laminated composite plates are extensively used in various industries due to their high stiffness-to-weight ratio and directional properties that allow optimization of the stiffness characteristics for specific applications. In multi-objective optimization problems, optimal designs for individual performance metrics may be conflicting, necessitating knowledge on the design requirements for different metrics and potential trade-offs. In this paper, a multi-objective design methodology for laminated composite plates with dynamic and load-carrying requirements is presented. Lamination parameters are used to characterize laminate stiffness matrices in a compact form resulting in a convex design space. Single and multi-objective optimization studies are carried out to determine the optimal stiffness properties. For improving the dynamic performance, maximization of the fundamental frequency metric is aimed. For enhancing the load-carrying capability, buckling load and equivalent stiffness metrics are maximized. Conforming and conflicting behavior of multiple objective functions for different plate geometries, boundary conditions and load cases are presented by determining Pareto-optimal solutions. The results provide a valuable insight for multi-objective optimization of laminated composite plates and show that presented methodology can be used in the design of such structures for improving the dynamic and load-carrying performance.

hi

DOI [BibTex]

DOI [BibTex]


no image
Low-Hysteresis and Low-Interference Soft Tactile Sensor Using a Conductive Coated Porous Elastomer and a Structure for Interference Reduction

Park, K., Kim, S., Lee, H., Park, I., Kim, J.

Sensors and Actuators A: Physical, 295, pages: 541-550, August 2019 (article)

Abstract
The need for soft whole-body tactile sensors is emerging. Piezoresistive materials are advantageous in terms of making large tactile sensors, but the hysteresis of piezoresistive materials is a major drawback. The hysteresis of a piezoresistive material should be attenuated to make a practical piezoresistive soft tactile sensor. In this paper, we introduce a low-hysteresis and low-interference soft tactile sensor using a conductive coated porous elastomer and a structure to reduce interference (grooves). The developed sensor exhibits low hysteresis because the transduction mechanism of the sensor is dominated by the contact between the conductive coated surface. In a cyclic loading experiment with different loading frequencies, the mechanical and piezoresistive hysteresis values of the sensor are less than 21.7% and 6.8%, respectively. The initial resistance change is found to be within 4% after the first loading cycle. To reduce the interference among the sensing points, we also propose a structure where the grooves are inserted between the adjacent electrodes. This structure is implemented during the molding process, which is adopted to extend the porous tactile sensor to large-scale and facile fabrication. The effects of the structure are investigated with respect to the normalized design parameters ΘD, ΘW, and ΘT in a simulation, and the result is validated for samples with the same design parameters. An indentation experiment also shows that the structure designed for interference reduction effectively attenuates the interference of the sensor array, indicating that the spatial resolution of the sensor array is improved. As a result, the sensor can exhibit low hysteresis and low interference simultaneously. This research can be used for many applications, such as robotic skin, grippers, and wearable devices.

hi

DOI [BibTex]

DOI [BibTex]


Cognitive Prostheses for Goal Achievement
Cognitive Prostheses for Goal Achievement

Lieder, F., Chen, O. X., Krueger, P. M., Griffiths, T. L.

Nature Human Behavior, 3, August 2019 (article)

Abstract
Procrastination and impulsivity take a significant toll on people’s lives and the economy at large. Both can result from the misalignment of an action's proximal rewards with its long-term value. Therefore, aligning immediate reward with long-term value could be a way to help people overcome motivational barriers and make better decisions. Previous research has shown that game elements, such as points, levels, and badges, can be used to motivate people and nudge their decisions on serious matters. Here, we develop a new approach to decision support that leveragesartificial intelligence and game elements to restructure challenging sequential decision problems in such a way that it becomes easier for people to take the right course of action. A series of four increasingly more realistic experiments suggests that this approach can enable people to make better decisions faster, procrastinate less, complete their work on time, and waste less time on unimportant tasks. These findings suggest that our method is a promising step towards developing cognitive prostheses that help people achieve their goals by enhancing their motivation and decision-making in everyday life.

re

DOI [BibTex]

DOI [BibTex]


no image
Lamination parameter interpolation method for design of manufacturable variable-stiffness composite panels

Serhat, G., Basdogan, I.

AIAA Journal, 57(7):3052–3065, July 2019 (article)

Abstract
Variable-stiffness laminates have lately drawn attention because they offer potential for additional structural performance improvements. In the optimization studies, laminate stiffness properties can be described efficiently by using lamination parameters, which is a well-established formulation for constant-stiffness laminates. However, ensuring manufacturability in the design of variable-stiffness laminates with lamination parameters is difficult. In this paper, a novel method for the design of variable-stiffness composite panels using lamination parameters is proposed. The method constrains the design space by controlling the magnitude and direction of change for the lamination parameters, and subsequently leads to a smooth change in the fiber angles. The method is used to maximize the fundamental frequencies of several panels as example cases. The solutions are calculated for various panel geometries and boundary conditions using the developed finite element analysis software. After finding optimal lamination parameter distributions, corresponding discrete fiber angles and fiber paths are retrieved, and the minimum radii of curvature are calculated. The results demonstrate that the proposed design method provides manufacturable smooth fiber paths while using the compact stiffness formulation feature of lamination parameters.

hi

DOI [BibTex]


no image
Physical Activity in Non-Ambulatory Toddlers with Cerebral Palsy

M.Orlando, J., Pierce, S., Mohan, M., Skorup, J., Paremski, A., Bochnak, M., Prosser, L. A.

Research in Developmental Disabilities, 90, pages: 51-58, July 2019 (article)

Abstract
Background: Children with cerebral palsy are less likely to be physically active than their peers, however there is limited evidence regarding self-initiated physical activity in toddlers who are not able, or who may never be able, to walk. Aims: The aim of this study was to measure self-initiated physical activity and its relationship to gross motor function and participation in non-ambulatory toddlers with cerebral palsy. Methods and procedures: Participants were between the ages of 1–3 years. Physical activity during independent floor-play at home was recorded using a wearable tri-axial accelerometer worn on the child’s thigh. The Gross Motor Function Measure-66 and the Child Engagement in Daily Life, a parent-reported questionnaire of participation, were administered. Outcomes and results: Data were analyzed from the twenty participants who recorded at least 90 min of floor-play (mean: 229 min), resulting in 4598 total floor-play minutes. The relationship between physical activity and gross motor function was not statistically significant (r = 0.20; p = 0.39), nor were the relationships between physical activity and participation (r = 0.05−0.09; p = 0.71−0.84). Conclusions and implications: The results suggest physical activity during floor-play is not related to gross motor function or participation in non-ambulatory toddlers with cerebral palsy. Clinicians and researchers should independently measure physical activity, gross motor function, and participation.

hi

DOI [BibTex]

DOI [BibTex]


Implementation of a 6-{DOF} Parallel Continuum Manipulator for Delivering Fingertip Tactile Cues
Implementation of a 6-DOF Parallel Continuum Manipulator for Delivering Fingertip Tactile Cues

Young, E. M., Kuchenbecker, K. J.

IEEE Transactions on Haptics, 12(3):295-306, June 2019 (article)

Abstract
Existing fingertip haptic devices can deliver different subsets of tactile cues in a compact package, but we have not yet seen a wearable six-degree-of-freedom (6-DOF) display. This paper presents the Fuppeteer (short for Fingertip Puppeteer), a device that is capable of controlling the position and orientation of a flat platform, such that any combination of normal and shear force can be delivered at any location on any human fingertip. We build on our previous work of designing a parallel continuum manipulator for fingertip haptics by presenting a motorized version in which six flexible Nitinol wires are actuated via independent roller mechanisms and proportional-derivative controllers. We evaluate the settling time and end-effector vibrations observed during system responses to step inputs. After creating a six-dimensional lookup table and adjusting simulated inputs using measured Jacobians, we show that the device can make contact with all parts of the fingertip with a mean error of 1.42 mm. Finally, we present results from a human-subject study. A total of 24 users discerned 9 evenly distributed contact locations with an average accuracy of 80.5%. Translational and rotational shear cues were identified reasonably well near the center of the fingertip and more poorly around the edges.

hi

DOI Project Page [BibTex]


no image
How Does It Feel to Clap Hands with a Robot?

Fitter, N. T., Kuchenbecker, K. J.

International Journal of Social Robotics, 12(1):113-127, April 2019 (article)

Abstract
Future robots may need lighthearted physical interaction capabilities to connect with people in meaningful ways. To begin exploring how users perceive playful human–robot hand-to-hand interaction, we conducted a study with 20 participants. Each user played simple hand-clapping games with the Rethink Robotics Baxter Research Robot during a 1-h-long session involving 24 randomly ordered conditions that varied in facial reactivity, physical reactivity, arm stiffness, and clapping tempo. Survey data and experiment recordings demonstrate that this interaction is viable: all users successfully completed the experiment and mentioned enjoying at least one game without prompting. Hand-clapping tempo was highly salient to users, and human-like robot errors were more widely accepted than mechanical errors. Furthermore, perceptions of Baxter varied in the following statistically significant ways: facial reactivity increased the robot’s perceived pleasantness and energeticness; physical reactivity decreased pleasantness, energeticness, and dominance; higher arm stiffness increased safety and decreased dominance; and faster tempo increased energeticness and increased dominance. These findings can motivate and guide roboticists who want to design social–physical human–robot interactions.

hi

DOI [BibTex]

DOI [BibTex]


no image
Resource-rational analysis: Understanding human cognition as the optimal use of limited computational resources

Lieder, F., Griffiths, T. L.

Behavioral and Brain Sciences, 43, E1, Febuary 2019 (article)

Abstract
Modeling human cognition is challenging because there are infinitely many mechanisms that can generate any given observation. Some researchers address this by constraining the hypothesis space through assumptions about what the human mind can and cannot do, while others constrain it through principles of rationality and adaptation. Recent work in economics, psychology, neuroscience, and linguistics has begun to integrate both approaches by augmenting rational models with cognitive constraints, incorporating rational principles into cognitive architectures, and applying optimality principles to understanding neural representations. We identify the rational use of limited resources as a unifying principle underlying these diverse approaches, expressing it in a new cognitive modeling paradigm called resource-rational analysis. The integration of rational principles with realistic cognitive constraints makes resource-rational analysis a promising framework for reverse-engineering cognitive mechanisms and representations. It has already shed new light on the debate about human rationality and can be leveraged to revisit classic questions of cognitive psychology within a principled computational framework. We demonstrate that resource-rational models can reconcile the mind's most impressive cognitive skills with people's ostensive irrationality. Resource-rational analysis also provides a new way to connect psychological theory more deeply with artificial intelligence, economics, neuroscience, and linguistics.

re

DOI [BibTex]

DOI [BibTex]


no image
The Perception of Ultrasonic Square Reductions of Friction With Variable Sharpness and Duration

Gueorguiev, D., Vezzoli, E., Sednaoui, T., Grisoni, L., Lemaire-Semail, B.

IEEE Transactions on Haptics, 12(2):179-188, January 2019 (article)

Abstract
The human perception of square ultrasonic modulation of the finger-surface friction was investigated during active tactile exploration by using short frictional cues of varying duration and sharpness. In a first experiment, we asked participants to discriminate the transition time and duration of short square ultrasonic reductions of friction. They proved very sensitive to discriminate millisecond differences in these two parameters with the average psychophysical thresholds being 2.3–2.4 ms for both parameters. A second experiment focused on the perception of square friction reductions with variable transition times and durations. We found that for durations of the stimulation larger than 90 ms, participants often perceived three or four edges when only two stimulations were presented while they consistently felt two edges for signals shorter than 50 ms. A subsequent analysis of the contact forces induced by these ultrasonic stimulations during slow and fast active exploration showed that two identical consecutive ultrasonic pulses can induce significantly different frictional dynamics especially during fast motion of the finger. These results confirm the human sensitivity to transient frictional cues and suggest that the human perception of square reductions of friction can depend on their sharpness and duration as well as on the speed of exploration.

hi

DOI [BibTex]

DOI [BibTex]


Tactile Roughness Perception of Virtual Gratings by Electrovibration
Tactile Roughness Perception of Virtual Gratings by Electrovibration

Isleyen, A., Vardar, Y., Basdogan, C.

IEEE Transactions on Haptics, 2019 (article) Accepted

hi

[BibTex]

[BibTex]


A Rational Reinterpretation of Dual Process Theories
A Rational Reinterpretation of Dual Process Theories

Milli, S., Lieder, F., Griffiths, T. L.

2019 (article)

Abstract
Highly influential "dual-process" accounts of human cognition postulate the coexistence of a slow accurate system with a fast error-prone system. But why would there be just two systems rather than, say, one or 93? Here, we argue that a dual-process architecture might be neither arbitrary nor irrational, but might instead reflect a rational tradeoff between the cognitive flexibility afforded by multiple systems and the time and effort required to choose between them. We investigate what the optimal set and number of cognitive systems would be depending on the structure of the environment. We find that the optimal number of systems depends on the variability of the environment and the difficulty of deciding when which system should be used. Furthermore, when having two systems is optimal, then the first system is fast but error-prone and the second system is slow but accurate. Our findings thereby provide a rational reinterpretation of dual-process theories.

re

DOI [BibTex]

DOI [BibTex]

2016


no image
An electro-active polymer based lens module for dynamically varying focal system

Yun, S., Park, S., Nam, S., Park, B., Park, S. K., Mun, S., Lim, J. M., Kyung, K.

Applied Physics Letters, 109(14):141908, October 2016 (article)

Abstract
We demonstrate a polymer-based active-lens module allowing a dynamic focus controllable optical system with a wide tunable range. The active-lens module is composed of parallelized two active- lenses with a convex and a concave shaped hemispherical lens structure, respectively. Under opera- tion with dynamic input voltage signals, each active-lens produces translational movement bi-directionally responding to a hybrid driving force that is a combination of an electro-active response of a thin dielectric elastomer membrane and an electro-static attraction force. Since the proposed active lens module widely modulates a gap-distance between lens-elements, an optical system based on the active-lens module provides widely-variable focusing for selective imaging of objects in arbitrary position.

hi

link (url) DOI [BibTex]

2016


link (url) DOI [BibTex]


no image
Wrinkle structures formed by formulating UV-crosslinkable liquid prepolymers

Park, S. K., Kwark, Y., Nam, S., Park, S., Park, B., Yun, S., Moon, J., Lee, J., Yu, B., Kyung, K.

Polymer, 99, pages: 447-452, September 2016 (article)

Abstract
Artificial wrinkles have recently been in the spotlight due to their potential use in high-tech applications. A spontaneously wrinkled film can be fabricated from UV-crosslinkable liquid prepolymers. Here, we controlled the wrinkle formation by simply formulating two UV-crosslinkable liquid prepolymers, tetraethylene glycol bis(4-ethenyl-2,3,5,6-tetrafluorophenyl) ether (TEGDSt) and tetraethylene glycol diacrylate (TEGDA). The wrinkles were formed from the TEGDSt/TEGDA formulated prepolymer layers containing up to 30 wt% of TEGDA. The wrinkle formation depended upon the rate of photo-crosslinking reaction of the formulated prepolymers. The first order apparent rate constant, kapp, was between ca. 5.7 × 10−3 and 12.2 × 10−3 s−1 for the wrinkle formation. The wrinkle structures were modulated within the kapp mainly due to variation in the extent of shrinkage of the formulated prepolymer layers with the content of TEGDA

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Objective assessment of robotic surgical skill using instrument contact vibrations

Gomez, E. D., Aggarwal, R., McMahan, W., Bark, K., Kuchenbecker, K. J.

Surgical Endoscopy, 30(4):1419-1431, 2016 (article)

hi

[BibTex]

[BibTex]


no image
Cutaneous Feedback of Fingertip Deformation and Vibration for Palpation in Robotic Surgery

Pacchierotti, C., Prattichizzo, D., Kuchenbecker, K. J.

IEEE Transactions on Biomedical Engineering, 63(2):278-287, February 2016 (article)

hi

[BibTex]

[BibTex]


no image
Structure modulated electrostatic deformable mirror for focus and geometry control

Nam, S., Park, S., Yun, S., Park, B., Park, S. K., Kyung, K.

Optics Express, 24(1):55-66, OSA, January 2016 (article)

Abstract
We suggest a way to electrostatically control deformed geometry of an electrostatic deformable mirror (EDM) based on geometric modulation of a basement. The EDM is composed of a metal coated elastomeric membrane (active mirror) and a polymeric basement with electrode (ground). When an electrical voltage is applied across the components, the active mirror deforms toward the stationary basement responding to electrostatic attraction force in an air gap. Since the differentiated gap distance can induce change in electrostatic force distribution between the active mirror and the basement, the EDMs are capable of controlling deformed geometry of the active mirror with different basement structures (concave, flat, and protrusive). The modulation of the deformed geometry leads to significant change in the range of the focal length of the EDMs. Even under dynamic operations, the EDM shows fairly consistent and large deformation enough to change focal length in a wide frequency range (1~175 Hz). The geometric modulation of the active mirror with dynamic focus tunability can allow the EDM to be an active mirror lens for optical zoom devices as well as an optical component controlling field of view.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Peripheral vs. central determinants of vibrotactile adaptation

Klöcker, A., Gueorguiev, D., Thonnard, J. L., Mouraux, A.

Journal of Neurophysiology, 115(2):685-691, 2016, PMID: 26581868 (article)

Abstract
Long-lasting mechanical vibrations applied to the skin induce a reversible decrease in the perception of vibration at the stimulated skin site. This phenomenon of vibrotactile adaptation has been studied extensively, yet there is still no clear consensus on the mechanisms leading to vibrotactile adaptation. In particular, the respective contributions of 1) changes affecting mechanical skin impedance, 2) peripheral processes, and 3) central processes are largely unknown. Here we used direct electrical stimulation of nerve fibers to bypass mechanical transduction processes and thereby explore the possible contribution of central vs. peripheral processes to vibrotactile adaptation. Three experiments were conducted. In the first, adaptation was induced with mechanical vibration of the fingertip (51- or 251-Hz vibration delivered for 8 min, at 40× detection threshold). In the second, we attempted to induce adaptation with transcutaneous electrical stimulation of the median nerve (51- or 251-Hz constant-current pulses delivered for 8 min, at 1.5× detection threshold). Vibrotactile detection thresholds were measured before and after adaptation. Mechanical stimulation induced a clear increase of vibrotactile detection thresholds. In contrast, thresholds were unaffected by electrical stimulation. In the third experiment, we assessed the effect of mechanical adaptation on the detection thresholds to transcutaneous electrical nerve stimuli, measured before and after adaptation. Electrical detection thresholds were unaffected by the mechanical adaptation. Taken together, our results suggest that vibrotactile adaptation is predominantly the consequence of peripheral mechanoreceptor processes and/or changes in biomechanical properties of the skin.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Silent Expectations: Dynamic Causal Modeling of Cortical Prediction and Attention to Sounds That Weren’t

Chennu, S., Noreika, V., Gueorguiev, D., Shtyrov, Y., Bekinschtein, T. A., Henson, R.

Journal of Neuroscience, 36(32):8305-8316, Society for Neuroscience, 2016 (article)

Abstract
There is increasing evidence that human perception is realized by a hierarchy of neural processes in which predictions sent backward from higher levels result in prediction errors that are fed forward from lower levels, to update the current model of the environment. Moreover, the precision of prediction errors is thought to be modulated by attention. Much of this evidence comes from paradigms in which a stimulus differs from that predicted by the recent history of other stimuli (generating a so-called {\textquotedblleft}mismatch response{\textquotedblright}). There is less evidence from situations where a prediction is not fulfilled by any sensory input (an {\textquotedblleft}omission{\textquotedblright} response). This situation arguably provides a more direct measure of {\textquotedblleft}top-down{\textquotedblright} predictions in the absence of confounding {\textquotedblleft}bottom-up{\textquotedblright} input. We applied Dynamic Causal Modeling of evoked electromagnetic responses recorded by EEG and MEG to an auditory paradigm in which we factorially crossed the presence versus absence of {\textquotedblleft}bottom-up{\textquotedblright} stimuli with the presence versus absence of {\textquotedblleft}top-down{\textquotedblright} attention. Model comparison revealed that both mismatch and omission responses were mediated by increased forward and backward connections, differing primarily in the driving input. In both responses, modeling results suggested that the presence of attention selectively modulated backward {\textquotedblleft}prediction{\textquotedblright} connections. Our results provide new model-driven evidence of the pure top-down prediction signal posited in theories of hierarchical perception, and highlight the role of attentional precision in strengthening this prediction.SIGNIFICANCE STATEMENT Human auditory perception is thought to be realized by a network of neurons that maintain a model of and predict future stimuli. Much of the evidence for this comes from experiments where a stimulus unexpectedly differs from previous ones, which generates a well-known {\textquotedblleft}mismatch response.{\textquotedblright} But what happens when a stimulus is unexpectedly omitted altogether? By measuring the brain{\textquoteright}s electromagnetic activity, we show that it also generates an {\textquotedblleft}omission response{\textquotedblright} that is contingent on the presence of attention. We model these responses computationally, revealing that mismatch and omission responses only differ in the location of inputs into the same underlying neuronal network. In both cases, we show that attention selectively strengthens the brain{\textquoteright}s prediction of the future.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Touch uses frictional cues to discriminate flat materials

Gueorguiev, D., Bochereau, S., Mouraux, A., Hayward, V., Thonnard, J.

Scientific reports, 6, pages: 25553, Nature Publishing Group, 2016 (article)

hi

[BibTex]

[BibTex]

2014


no image
Haptic Robotization of Human Body via Data-Driven Vibrotactile Feedback

Kurihara, Y., Takei, S., Nakai, Y., Hachisu, T., Kuchenbecker, K. J., Kajimoto, H.

Entertainment Computing, 5(4):485-494, December 2014 (article)

hi

[BibTex]

2014


[BibTex]


no image
Modeling and Rendering Realistic Textures from Unconstrained Tool-Surface Interactions

Culbertson, H., Unwin, J., Kuchenbecker, K. J.

IEEE Transactions on Haptics, 7(3):381-292, July 2014 (article)

hi

[BibTex]

[BibTex]

2006


no image
Induced Master Motion in Force-Reflecting Teleoperation

Kuchenbecker, K. J., Niemeyer, G.

ASME Journal of Dynamic Systems, Measurement, and Control, 128(4):800-810, December 2006 (article)

hi

[BibTex]

2006


[BibTex]


no image
Improving Contact Realism Through Event-Based Haptic Feedback

Kuchenbecker, K. J., Fiene, J. P., Niemeyer, G.

IEEE Transactions on Visualization and Computer Graphics, 12(2):219-230, March 2006 (article)

hi

[BibTex]

[BibTex]


no image
Die Effektivität von schriftlichen und graphischen Warnhinweisen auf Zigarettenschachteln

Petersen, L., Lieder, F.

Zeitschrift für Sozialpsychologie, 37(4):245-258, Verlag Hans Huber, 2006 (article)

Abstract
In der vorliegenden Studie wurde die Effektivität von furchterregenden Warnhinweisen bei jugendlichen Rauchern und Raucherinnen analysiert. 336 Raucher/-innen (Durchschnittsalter: 15 Jahre) wurden schriftliche oder graphische Warnhinweise auf Zigarettenpackungen präsentiert (Experimentalbedingungen; n = 96, n = 119), oder sie erhielten keine Warnhinweise (Kontrollbedingung; n = 94). Anschließend wurden die Modellfaktoren des revidierten Modells der Schutzmotivation (Arthur & Quester, 2004) erhoben. Die Ergebnisse stützen die Hypothese, dass die Faktoren «Schweregrad der Schädigung» und «Wahrscheinlichkeit der Schädigung» die Verhaltenswahrscheinlichkeit, weniger oder leichtere Zigaretten zu rauchen, vermittelt über den Mediator «Furcht» beeinflussen. Die Verhaltenswahrscheinlichkeit wurde dagegen nicht von den drei experimentellen Bedingungen beeinflusst. Auch konnten die Faktoren «Handlungswirksamkeitserwartungen» und «Selbstwirksamkeitserwartungen» nicht als Moderatoren des Zusammenhangs zwischen Furcht und Verhaltenswahrscheinlichkeit bestätigt werden.

re

DOI [BibTex]

DOI [BibTex]