Header logo is


2019


no image
Hierarchical Task-Parameterized Learning from Demonstration for Collaborative Object Movement

Hu, S., Kuchenbecker, K. J.

Applied Bionics and Biomechanics, (9765383), December 2019 (article)

Abstract
Learning from demonstration (LfD) enables a robot to emulate natural human movement instead of merely executing preprogrammed behaviors. This article presents a hierarchical LfD structure of task-parameterized models for object movement tasks, which are ubiquitous in everyday life and could benefit from robotic support. Our approach uses the task-parameterized Gaussian mixture model (TP-GMM) algorithm to encode sets of demonstrations in separate models that each correspond to a different task situation. The robot then maximizes its expected performance in a new situation by either selecting a good existing model or requesting new demonstrations. Compared to a standard implementation that encodes all demonstrations together for all test situations, the proposed approach offers four advantages. First, a simply defined distance function can be used to estimate test performance by calculating the similarity between a test situation and the existing models. Second, the proposed approach can improve generalization, e.g., better satisfying the demonstrated task constraints and speeding up task execution. Third, because the hierarchical structure encodes each demonstrated situation individually, a wider range of task situations can be modeled in the same framework without deteriorating performance. Last, adding or removing demonstrations incurs low computational load, and thus, the robot’s skill library can be built incrementally. We first instantiate the proposed approach in a simulated task to validate these advantages. We then show that the advantages transfer to real hardware for a task where naive participants collaborated with a Willow Garage PR2 robot to move a handheld object. For most tested scenarios, our hierarchical method achieved significantly better task performance and subjective ratings than both a passive model with only gravity compensation and a single TP-GMM encoding all demonstrations.

hi

DOI [BibTex]


no image
Low-Hysteresis and Low-Interference Soft Tactile Sensor Using a Conductive Coated Porous Elastomer and a Structure for Interference Reduction

Park, K., Kim, S., Lee, H., Park, I., Kim, J.

Sensors and Actuators A: Physical, 295, pages: 541-550, August 2019 (article)

Abstract
The need for soft whole-body tactile sensors is emerging. Piezoresistive materials are advantageous in terms of making large tactile sensors, but the hysteresis of piezoresistive materials is a major drawback. The hysteresis of a piezoresistive material should be attenuated to make a practical piezoresistive soft tactile sensor. In this paper, we introduce a low-hysteresis and low-interference soft tactile sensor using a conductive coated porous elastomer and a structure to reduce interference (grooves). The developed sensor exhibits low hysteresis because the transduction mechanism of the sensor is dominated by the contact between the conductive coated surface. In a cyclic loading experiment with different loading frequencies, the mechanical and piezoresistive hysteresis values of the sensor are less than 21.7% and 6.8%, respectively. The initial resistance change is found to be within 4% after the first loading cycle. To reduce the interference among the sensing points, we also propose a structure where the grooves are inserted between the adjacent electrodes. This structure is implemented during the molding process, which is adopted to extend the porous tactile sensor to large-scale and facile fabrication. The effects of the structure are investigated with respect to the normalized design parameters ΘD, ΘW, and ΘT in a simulation, and the result is validated for samples with the same design parameters. An indentation experiment also shows that the structure designed for interference reduction effectively attenuates the interference of the sensor array, indicating that the spatial resolution of the sensor array is improved. As a result, the sensor can exhibit low hysteresis and low interference simultaneously. This research can be used for many applications, such as robotic skin, grippers, and wearable devices.

hi

DOI [BibTex]

DOI [BibTex]


no image
Physical activity in non-ambulatory toddlers with cerebral palsy

M.Orlando, J., Pierce, S., Mohan, M., Skorup, J., Paremski, A., Bochnak, M., Prosser, L. A.

Research in Developmental Disabilities, 90, pages: 51-58, July 2019 (article)

Abstract
Background: Children with cerebral palsy are less likely to be physically active than their peers, however there is limited evidence regarding self-initiated physical activity in toddlers who are not able, or who may never be able, to walk. Aims: The aim of this study was to measure self-initiated physical activity and its relationship to gross motor function and participation in non-ambulatory toddlers with cerebral palsy. Methods and procedures: Participants were between the ages of 1–3 years. Physical activity during independent floor-play at home was recorded using a wearable tri-axial accelerometer worn on the child’s thigh. The Gross Motor Function Measure-66 and the Child Engagement in Daily Life, a parent-reported questionnaire of participation, were administered. Outcomes and results: Data were analyzed from the twenty participants who recorded at least 90 min of floor-play (mean: 229 min), resulting in 4598 total floor-play minutes. The relationship between physical activity and gross motor function was not statistically significant (r = 0.20; p = 0.39), nor were the relationships between physical activity and participation (r = 0.05−0.09; p = 0.71−0.84). Conclusions and implications: The results suggest physical activity during floor-play is not related to gross motor function or participation in non-ambulatory toddlers with cerebral palsy. Clinicians and researchers should independently measure physical activity, gross motor function, and participation.

hi

DOI [BibTex]

DOI [BibTex]


Implementation of a 6-{DOF} Parallel Continuum Manipulator for Delivering Fingertip Tactile Cues
Implementation of a 6-DOF Parallel Continuum Manipulator for Delivering Fingertip Tactile Cues

Young, E. M., Kuchenbecker, K. J.

IEEE Transactions on Haptics, 12(3):295-306, June 2019 (article)

Abstract
Existing fingertip haptic devices can deliver different subsets of tactile cues in a compact package, but we have not yet seen a wearable six-degree-of-freedom (6-DOF) display. This paper presents the Fuppeteer (short for Fingertip Puppeteer), a device that is capable of controlling the position and orientation of a flat platform, such that any combination of normal and shear force can be delivered at any location on any human fingertip. We build on our previous work of designing a parallel continuum manipulator for fingertip haptics by presenting a motorized version in which six flexible Nitinol wires are actuated via independent roller mechanisms and proportional-derivative controllers. We evaluate the settling time and end-effector vibrations observed during system responses to step inputs. After creating a six-dimensional lookup table and adjusting simulated inputs using measured Jacobians, we show that the device can make contact with all parts of the fingertip with a mean error of 1.42 mm. Finally, we present results from a human-subject study. A total of 24 users discerned 9 evenly distributed contact locations with an average accuracy of 80.5%. Translational and rotational shear cues were identified reasonably well near the center of the fingertip and more poorly around the edges.

hi

DOI Project Page [BibTex]


no image
How Does It Feel to Clap Hands with a Robot?

Fitter, N. T., Kuchenbecker, K. J.

International Journal of Social Robotics, 12(1):113-127, April 2019 (article)

Abstract
Future robots may need lighthearted physical interaction capabilities to connect with people in meaningful ways. To begin exploring how users perceive playful human–robot hand-to-hand interaction, we conducted a study with 20 participants. Each user played simple hand-clapping games with the Rethink Robotics Baxter Research Robot during a 1-h-long session involving 24 randomly ordered conditions that varied in facial reactivity, physical reactivity, arm stiffness, and clapping tempo. Survey data and experiment recordings demonstrate that this interaction is viable: all users successfully completed the experiment and mentioned enjoying at least one game without prompting. Hand-clapping tempo was highly salient to users, and human-like robot errors were more widely accepted than mechanical errors. Furthermore, perceptions of Baxter varied in the following statistically significant ways: facial reactivity increased the robot’s perceived pleasantness and energeticness; physical reactivity decreased pleasantness, energeticness, and dominance; higher arm stiffness increased safety and decreased dominance; and faster tempo increased energeticness and increased dominance. These findings can motivate and guide roboticists who want to design social–physical human–robot interactions.

hi

DOI [BibTex]

DOI [BibTex]

2018


Softness, Warmth, and Responsiveness Improve Robot Hugs
Softness, Warmth, and Responsiveness Improve Robot Hugs

Block, A. E., Kuchenbecker, K. J.

International Journal of Social Robotics, 11(1):49-64, October 2018 (article)

Abstract
Hugs are one of the first forms of contact and affection humans experience. Due to their prevalence and health benefits, roboticists are naturally interested in having robots one day hug humans as seamlessly as humans hug other humans. This project's purpose is to evaluate human responses to different robot physical characteristics and hugging behaviors. Specifically, we aim to test the hypothesis that a soft, warm, touch-sensitive PR2 humanoid robot can provide humans with satisfying hugs by matching both their hugging pressure and their hugging duration. Thirty relatively young and rather technical participants experienced and evaluated twelve hugs with the robot, divided into three randomly ordered trials that focused on physical robot characteristics (single factor, three levels) and nine randomly ordered trials with low, medium, and high hug pressure and duration (two factors, three levels each). Analysis of the results showed that people significantly prefer soft, warm hugs over hard, cold hugs. Furthermore, users prefer hugs that physically squeeze them and release immediately when they are ready for the hug to end. Taking part in the experiment also significantly increased positive user opinions of robots and robot use.

hi

link (url) DOI Project Page [BibTex]

2018


link (url) DOI Project Page [BibTex]


no image
Task-Driven PCA-Based Design Optimization of Wearable Cutaneous Devices

Pacchierotti, C., Young, E. M., Kuchenbecker, K. J.

IEEE Robotics and Automation Letters, 3(3):2214-2221, July 2018, Presented at ICRA 2018 (article)

Abstract
Small size and low weight are critical requirements for wearable and portable haptic interfaces, making it essential to work toward the optimization of their sensing and actuation systems. This paper presents a new approach for task-driven design optimization of fingertip cutaneous haptic devices. Given one (or more) target tactile interactions to render and a cutaneous device to optimize, we evaluate the minimum number and best configuration of the device’s actuators to minimize the estimated haptic rendering error. First, we calculate the motion needed for the original cutaneous device to render the considered target interaction. Then, we run a principal component analysis (PCA) to search for possible couplings between the original motor inputs, looking also for the best way to reconfigure them. If some couplings exist, we can re-design our cutaneous device with fewer motors, optimally configured to render the target tactile sensation. The proposed approach is quite general and can be applied to different tactile sensors and cutaneous devices. We validated it using a BioTac tactile sensor and custom plate-based 3-DoF and 6-DoF fingertip cutaneous devices, considering six representative target tactile interactions. The algorithm was able to find couplings between each device’s motor inputs, proving it to be a viable approach to optimize the design of wearable and portable cutaneous devices. Finally, we present two examples of optimized designs for our 3-DoF fingertip cutaneous device.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Teaching a Robot Bimanual Hand-Clapping Games via Wrist-Worn {IMU}s
Teaching a Robot Bimanual Hand-Clapping Games via Wrist-Worn IMUs

Fitter, N. T., Kuchenbecker, K. J.

Frontiers in Robotics and Artificial Intelligence, 5(85), July 2018 (article)

Abstract
Colleagues often shake hands in greeting, friends connect through high fives, and children around the world rejoice in hand-clapping games. As robots become more common in everyday human life, they will have the opportunity to join in these social-physical interactions, but few current robots are intended to touch people in friendly ways. This article describes how we enabled a Baxter Research Robot to both teach and learn bimanual hand-clapping games with a human partner. Our system monitors the user's motions via a pair of inertial measurement units (IMUs) worn on the wrists. We recorded a labeled library of 10 common hand-clapping movements from 10 participants; this dataset was used to train an SVM classifier to automatically identify hand-clapping motions from previously unseen participants with a test-set classification accuracy of 97.0%. Baxter uses these sensors and this classifier to quickly identify the motions of its human gameplay partner, so that it can join in hand-clapping games. This system was evaluated by N = 24 naïve users in an experiment that involved learning sequences of eight motions from Baxter, teaching Baxter eight-motion game patterns, and completing a free interaction period. The motion classification accuracy in this less structured setting was 85.9%, primarily due to unexpected variations in motion timing. The quantitative task performance results and qualitative participant survey responses showed that learning games from Baxter was significantly easier than teaching games to Baxter, and that the teaching role caused users to consider more teamwork aspects of the gameplay. Over the course of the experiment, people felt more understood by Baxter and became more willing to follow the example of the robot. Users felt uniformly safe interacting with Baxter, and they expressed positive opinions of Baxter and reported fun interacting with the robot. Taken together, the results indicate that this robot achieved credible social-physical interaction with humans and that its ability to both lead and follow systematically changed the human partner's experience.

hi

DOI [BibTex]

DOI [BibTex]


Learning 3D Shape Completion under Weak Supervision
Learning 3D Shape Completion under Weak Supervision

Stutz, D., Geiger, A.

Arxiv, May 2018 (article)

Abstract
We address the problem of 3D shape completion from sparse and noisy point clouds, a fundamental problem in computer vision and robotics. Recent approaches are either data-driven or learning-based: Data-driven approaches rely on a shape model whose parameters are optimized to fit the observations; Learning-based approaches, in contrast, avoid the expensive optimization step by learning to directly predict complete shapes from incomplete observations in a fully-supervised setting. However, full supervision is often not available in practice. In this work, we propose a weakly-supervised learning-based approach to 3D shape completion which neither requires slow optimization nor direct supervision. While we also learn a shape prior on synthetic data, we amortize, i.e., learn, maximum likelihood fitting using deep neural networks resulting in efficient shape completion without sacrificing accuracy. On synthetic benchmarks based on ShapeNet and ModelNet as well as on real robotics data from KITTI and Kinect, we demonstrate that the proposed amortized maximum likelihood approach is able to compete with fully supervised baselines and outperforms data-driven approaches, while requiring less supervision and being significantly faster.

avg

PDF Project Page Project Page [BibTex]


no image
Automatically Rating Trainee Skill at a Pediatric Laparoscopic Suturing Task

Oquendo, Y. A., Riddle, E. W., Hiller, D., Blinman, T. A., Kuchenbecker, K. J.

Surgical Endoscopy, 32(4):1840-1857, April 2018 (article)

hi

DOI [BibTex]

DOI [BibTex]


Augmented Reality Meets Computer Vision: Efficient Data Generation for Urban Driving Scenes
Augmented Reality Meets Computer Vision: Efficient Data Generation for Urban Driving Scenes

Alhaija, H., Mustikovela, S., Mescheder, L., Geiger, A., Rother, C.

International Journal of Computer Vision (IJCV), 2018, 2018 (article)

Abstract
The success of deep learning in computer vision is based on the availability of large annotated datasets. To lower the need for hand labeled images, virtually rendered 3D worlds have recently gained popularity. Unfortunately, creating realistic 3D content is challenging on its own and requires significant human effort. In this work, we propose an alternative paradigm which combines real and synthetic data for learning semantic instance segmentation and object detection models. Exploiting the fact that not all aspects of the scene are equally important for this task, we propose to augment real-world imagery with virtual objects of the target category. Capturing real-world images at large scale is easy and cheap, and directly provides real background appearances without the need for creating complex 3D models of the environment. We present an efficient procedure to augment these images with virtual objects. In contrast to modeling complete 3D environments, our data augmentation approach requires only a few user interactions in combination with 3D models of the target object category. Leveraging our approach, we introduce a novel dataset of augmented urban driving scenes with 360 degree images that are used as environment maps to create realistic lighting and reflections on rendered objects. We analyze the significance of realistic object placement by comparing manual placement by humans to automatic methods based on semantic scene analysis. This allows us to create composite images which exhibit both realistic background appearance as well as a large number of complex object arrangements. Through an extensive set of experiments, we conclude the right set of parameters to produce augmented data which can maximally enhance the performance of instance segmentation models. Further, we demonstrate the utility of the proposed approach on training standard deep models for semantic instance segmentation and object detection of cars in outdoor driving scenarios. We test the models trained on our augmented data on the KITTI 2015 dataset, which we have annotated with pixel-accurate ground truth, and on the Cityscapes dataset. Our experiments demonstrate that the models trained on augmented imagery generalize better than those trained on fully synthetic data or models trained on limited amounts of annotated real data.

avg

pdf Project Page [BibTex]

pdf Project Page [BibTex]


no image
Immersive Low-Cost Virtual Reality Treatment for Phantom Limb Pain: Evidence from Two Cases

Ambron, E., Miller, A., Kuchenbecker, K. J., Buxbaum, L. J., Coslett, H. B.

Frontiers in Neurology, 9(67):1-7, 2018 (article)

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Learning 3D Shape Completion under Weak Supervision
Learning 3D Shape Completion under Weak Supervision

Stutz, D., Geiger, A.

International Journal of Computer Vision (IJCV), 2018, 2018 (article)

Abstract
We address the problem of 3D shape completion from sparse and noisy point clouds, a fundamental problem in computer vision and robotics. Recent approaches are either data-driven or learning-based: Data-driven approaches rely on a shape model whose parameters are optimized to fit the observations; Learning-based approaches, in contrast, avoid the expensive optimization step by learning to directly predict complete shapes from incomplete observations in a fully-supervised setting. However, full supervision is often not available in practice. In this work, we propose a weakly-supervised learning-based approach to 3D shape completion which neither requires slow optimization nor direct supervision. While we also learn a shape prior on synthetic data, we amortize, i.e., learn, maximum likelihood fitting using deep neural networks resulting in efficient shape completion without sacrificing accuracy. On synthetic benchmarks based on ShapeNet and ModelNet as well as on real robotics data from KITTI and Kinect, we demonstrate that the proposed amortized maximum likelihood approach is able to compete with a fully supervised baseline and outperforms the data-driven approach of Engelmann et al., while requiring less supervision and being significantly faster.

avg

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Object Scene Flow
Object Scene Flow

Menze, M., Heipke, C., Geiger, A.

ISPRS Journal of Photogrammetry and Remote Sensing, 2018 (article)

Abstract
This work investigates the estimation of dense three-dimensional motion fields, commonly referred to as scene flow. While great progress has been made in recent years, large displacements and adverse imaging conditions as observed in natural outdoor environments are still very challenging for current approaches to reconstruction and motion estimation. In this paper, we propose a unified random field model which reasons jointly about 3D scene flow as well as the location, shape and motion of vehicles in the observed scene. We formulate the problem as the task of decomposing the scene into a small number of rigidly moving objects sharing the same motion parameters. Thus, our formulation effectively introduces long-range spatial dependencies which commonly employed local rigidity priors are lacking. Our inference algorithm then estimates the association of image segments and object hypotheses together with their three-dimensional shape and motion. We demonstrate the potential of the proposed approach by introducing a novel challenging scene flow benchmark which allows for a thorough comparison of the proposed scene flow approach with respect to various baseline models. In contrast to previous benchmarks, our evaluation is the first to provide stereo and optical flow ground truth for dynamic real-world urban scenes at large scale. Our experiments reveal that rigid motion segmentation can be utilized as an effective regularizer for the scene flow problem, improving upon existing two-frame scene flow methods. At the same time, our method yields plausible object segmentations without requiring an explicitly trained recognition model for a specific object class.

avg

Project Page [BibTex]

Project Page [BibTex]

2014


3D Traffic Scene Understanding from Movable Platforms
3D Traffic Scene Understanding from Movable Platforms

Geiger, A., Lauer, M., Wojek, C., Stiller, C., Urtasun, R.

IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 36(5):1012-1025, published, IEEE, Los Alamitos, CA, May 2014 (article)

Abstract
In this paper, we present a novel probabilistic generative model for multi-object traffic scene understanding from movable platforms which reasons jointly about the 3D scene layout as well as the location and orientation of objects in the scene. In particular, the scene topology, geometry and traffic activities are inferred from short video sequences. Inspired by the impressive driving capabilities of humans, our model does not rely on GPS, lidar or map knowledge. Instead, it takes advantage of a diverse set of visual cues in the form of vehicle tracklets, vanishing points, semantic scene labels, scene flow and occupancy grids. For each of these cues we propose likelihood functions that are integrated into a probabilistic generative model. We learn all model parameters from training data using contrastive divergence. Experiments conducted on videos of 113 representative intersections show that our approach successfully infers the correct layout in a variety of very challenging scenarios. To evaluate the importance of each feature cue, experiments using different feature combinations are conducted. Furthermore, we show how by employing context derived from the proposed method we are able to improve over the state-of-the-art in terms of object detection and object orientation estimation in challenging and cluttered urban environments.

avg ps

pdf link (url) [BibTex]

2014


pdf link (url) [BibTex]