Header logo is


2018


Softness, Warmth, and Responsiveness Improve Robot Hugs
Softness, Warmth, and Responsiveness Improve Robot Hugs

Block, A. E., Kuchenbecker, K. J.

International Journal of Social Robotics, 11(1):49-64, October 2018 (article)

Abstract
Hugs are one of the first forms of contact and affection humans experience. Due to their prevalence and health benefits, roboticists are naturally interested in having robots one day hug humans as seamlessly as humans hug other humans. This project's purpose is to evaluate human responses to different robot physical characteristics and hugging behaviors. Specifically, we aim to test the hypothesis that a soft, warm, touch-sensitive PR2 humanoid robot can provide humans with satisfying hugs by matching both their hugging pressure and their hugging duration. Thirty relatively young and rather technical participants experienced and evaluated twelve hugs with the robot, divided into three randomly ordered trials that focused on physical robot characteristics (single factor, three levels) and nine randomly ordered trials with low, medium, and high hug pressure and duration (two factors, three levels each). Analysis of the results showed that people significantly prefer soft, warm hugs over hard, cold hugs. Furthermore, users prefer hugs that physically squeeze them and release immediately when they are ready for the hug to end. Taking part in the experiment also significantly increased positive user opinions of robots and robot use.

hi

link (url) DOI Project Page [BibTex]

2018


link (url) DOI Project Page [BibTex]


no image
Task-Driven PCA-Based Design Optimization of Wearable Cutaneous Devices

Pacchierotti, C., Young, E. M., Kuchenbecker, K. J.

IEEE Robotics and Automation Letters, 3(3):2214-2221, July 2018, Presented at ICRA 2018 (article)

Abstract
Small size and low weight are critical requirements for wearable and portable haptic interfaces, making it essential to work toward the optimization of their sensing and actuation systems. This paper presents a new approach for task-driven design optimization of fingertip cutaneous haptic devices. Given one (or more) target tactile interactions to render and a cutaneous device to optimize, we evaluate the minimum number and best configuration of the device’s actuators to minimize the estimated haptic rendering error. First, we calculate the motion needed for the original cutaneous device to render the considered target interaction. Then, we run a principal component analysis (PCA) to search for possible couplings between the original motor inputs, looking also for the best way to reconfigure them. If some couplings exist, we can re-design our cutaneous device with fewer motors, optimally configured to render the target tactile sensation. The proposed approach is quite general and can be applied to different tactile sensors and cutaneous devices. We validated it using a BioTac tactile sensor and custom plate-based 3-DoF and 6-DoF fingertip cutaneous devices, considering six representative target tactile interactions. The algorithm was able to find couplings between each device’s motor inputs, proving it to be a viable approach to optimize the design of wearable and portable cutaneous devices. Finally, we present two examples of optimized designs for our 3-DoF fingertip cutaneous device.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Teaching a Robot Bimanual Hand-Clapping Games via Wrist-Worn {IMU}s
Teaching a Robot Bimanual Hand-Clapping Games via Wrist-Worn IMUs

Fitter, N. T., Kuchenbecker, K. J.

Frontiers in Robotics and Artificial Intelligence, 5(85), July 2018 (article)

Abstract
Colleagues often shake hands in greeting, friends connect through high fives, and children around the world rejoice in hand-clapping games. As robots become more common in everyday human life, they will have the opportunity to join in these social-physical interactions, but few current robots are intended to touch people in friendly ways. This article describes how we enabled a Baxter Research Robot to both teach and learn bimanual hand-clapping games with a human partner. Our system monitors the user's motions via a pair of inertial measurement units (IMUs) worn on the wrists. We recorded a labeled library of 10 common hand-clapping movements from 10 participants; this dataset was used to train an SVM classifier to automatically identify hand-clapping motions from previously unseen participants with a test-set classification accuracy of 97.0%. Baxter uses these sensors and this classifier to quickly identify the motions of its human gameplay partner, so that it can join in hand-clapping games. This system was evaluated by N = 24 naïve users in an experiment that involved learning sequences of eight motions from Baxter, teaching Baxter eight-motion game patterns, and completing a free interaction period. The motion classification accuracy in this less structured setting was 85.9%, primarily due to unexpected variations in motion timing. The quantitative task performance results and qualitative participant survey responses showed that learning games from Baxter was significantly easier than teaching games to Baxter, and that the teaching role caused users to consider more teamwork aspects of the gameplay. Over the course of the experiment, people felt more understood by Baxter and became more willing to follow the example of the robot. Users felt uniformly safe interacting with Baxter, and they expressed positive opinions of Baxter and reported fun interacting with the robot. Taken together, the results indicate that this robot achieved credible social-physical interaction with humans and that its ability to both lead and follow systematically changed the human partner's experience.

hi

DOI [BibTex]

DOI [BibTex]


Learning 3D Shape Completion under Weak Supervision
Learning 3D Shape Completion under Weak Supervision

Stutz, D., Geiger, A.

Arxiv, May 2018 (article)

Abstract
We address the problem of 3D shape completion from sparse and noisy point clouds, a fundamental problem in computer vision and robotics. Recent approaches are either data-driven or learning-based: Data-driven approaches rely on a shape model whose parameters are optimized to fit the observations; Learning-based approaches, in contrast, avoid the expensive optimization step by learning to directly predict complete shapes from incomplete observations in a fully-supervised setting. However, full supervision is often not available in practice. In this work, we propose a weakly-supervised learning-based approach to 3D shape completion which neither requires slow optimization nor direct supervision. While we also learn a shape prior on synthetic data, we amortize, i.e., learn, maximum likelihood fitting using deep neural networks resulting in efficient shape completion without sacrificing accuracy. On synthetic benchmarks based on ShapeNet and ModelNet as well as on real robotics data from KITTI and Kinect, we demonstrate that the proposed amortized maximum likelihood approach is able to compete with fully supervised baselines and outperforms data-driven approaches, while requiring less supervision and being significantly faster.

avg

PDF Project Page Project Page [BibTex]


no image
Nonlinear decoding of a complex movie from the mammalian retina

Botella-Soler, V., Deny, S., Martius, G., Marre, O., Tkačik, G.

PLOS Computational Biology, 14(5):1-27, Public Library of Science, May 2018 (article)

Abstract
Author summary Neurons in the retina transform patterns of incoming light into sequences of neural spikes. We recorded from ∼100 neurons in the rat retina while it was stimulated with a complex movie. Using machine learning regression methods, we fit decoders to reconstruct the movie shown from the retinal output. We demonstrated that retinal code can only be read out with a low error if decoders make use of correlations between successive spikes emitted by individual neurons. These correlations can be used to ignore spontaneous spiking that would, otherwise, cause even the best linear decoders to “hallucinate” nonexistent stimuli. This work represents the first high resolution single-trial full movie reconstruction and suggests a new paradigm for separating spontaneous from stimulus-driven neural activity.

al

DOI [BibTex]

DOI [BibTex]


no image
Automatically Rating Trainee Skill at a Pediatric Laparoscopic Suturing Task

Oquendo, Y. A., Riddle, E. W., Hiller, D., Blinman, T. A., Kuchenbecker, K. J.

Surgical Endoscopy, 32(4):1840-1857, April 2018 (article)

hi

DOI [BibTex]

DOI [BibTex]


{Direct observation of Zhang-Li torque expansion of magnetic droplet solitons}
Direct observation of Zhang-Li torque expansion of magnetic droplet solitons

Chung, S., Tuan Le, Q., Ahlberg, M., Awad, A. A., Weigand, M., Bykova, I., Khymyn, R., Dvornik, M., Mazraati, H., Houshang, A., Jiang, S., Nguyen, T. N. A., Goering, E., Schütz, G., Gräfe, J., \AAkerman, J.

{Physical Review Letters}, 120(21), American Physical Society, Woodbury, N.Y., 2018 (article)

Abstract
Magnetic droplets are nontopological dynamical solitons that can be nucleated in nanocontact based spin torque nano-oscillators (STNOs) with perpendicular magnetic anisotropy free layers. While theory predicts that the droplet should be of the same size as the nanocontact, its inherent drift instability has thwarted attempts at observing it directly using microscopy techniques. Here, we demonstrate highly stable magnetic droplets in all-perpendicular STNOs and present the first detailed droplet images using scanning transmission X-ray microscopy. In contrast to theoretical predictions, we find that the droplet diameter is about twice as large as the nanocontact. By extending the original droplet theory to properly account for the lateral current spread underneath the nanocontact, we show that the large discrepancy primarily arises from current-in-plane Zhang-Li torque adding an outward pressure on the droplet perimeter. Electrical measurements on droplets nucleated using a reversed current in the antiparallel state corroborate this picture.

mms

DOI [BibTex]

DOI [BibTex]


{Transmission x-ray microscopy at low temperatures: Irregular supercurrent flow at small length scales}
Transmission x-ray microscopy at low temperatures: Irregular supercurrent flow at small length scales

Simmendinger, J., Ruoss, S., Stahl, C., Weigand, M., Gräfe, J., Schütz, G., Albrecht, J.

{Physical Review B}, 97(13), American Physical Society, Woodbury, NY, 2018 (article)

Abstract
Scanning transmission x-ray microscopy has been used to image electric currents in superconducting films at temperatures down to 20 K. We detect significant deviations from a regular current path driven by macroscopic geometrical constraints. The magnetic stray field of supercurrents in a thin YBaCuO film is mapped into a soft-magnetic coating of permalloy. The so-created local magnetization of the ferromagnetic film can be detected by dichroic absorption of polarized x rays. To enable high-quality measurements in transmission geometry, the whole heterostructure of ferromagnet, superconductor, and single-crystalline substrate has been thinned to an overall thickness of less than 1 µm. With this technique, local supercurrents can be analyzed in a wide range of temperatures and magnetic fields. The less than 100 nm spatial resolution of the magnetic signal together with simultaneously obtained nanostructural data allow the correlation of local supercurrents with the micro- and nanostructure of the superconducting film.

mms

DOI [BibTex]

DOI [BibTex]


Augmented Reality Meets Computer Vision: Efficient Data Generation for Urban Driving Scenes
Augmented Reality Meets Computer Vision: Efficient Data Generation for Urban Driving Scenes

Alhaija, H., Mustikovela, S., Mescheder, L., Geiger, A., Rother, C.

International Journal of Computer Vision (IJCV), 2018, 2018 (article)

Abstract
The success of deep learning in computer vision is based on the availability of large annotated datasets. To lower the need for hand labeled images, virtually rendered 3D worlds have recently gained popularity. Unfortunately, creating realistic 3D content is challenging on its own and requires significant human effort. In this work, we propose an alternative paradigm which combines real and synthetic data for learning semantic instance segmentation and object detection models. Exploiting the fact that not all aspects of the scene are equally important for this task, we propose to augment real-world imagery with virtual objects of the target category. Capturing real-world images at large scale is easy and cheap, and directly provides real background appearances without the need for creating complex 3D models of the environment. We present an efficient procedure to augment these images with virtual objects. In contrast to modeling complete 3D environments, our data augmentation approach requires only a few user interactions in combination with 3D models of the target object category. Leveraging our approach, we introduce a novel dataset of augmented urban driving scenes with 360 degree images that are used as environment maps to create realistic lighting and reflections on rendered objects. We analyze the significance of realistic object placement by comparing manual placement by humans to automatic methods based on semantic scene analysis. This allows us to create composite images which exhibit both realistic background appearance as well as a large number of complex object arrangements. Through an extensive set of experiments, we conclude the right set of parameters to produce augmented data which can maximally enhance the performance of instance segmentation models. Further, we demonstrate the utility of the proposed approach on training standard deep models for semantic instance segmentation and object detection of cars in outdoor driving scenarios. We test the models trained on our augmented data on the KITTI 2015 dataset, which we have annotated with pixel-accurate ground truth, and on the Cityscapes dataset. Our experiments demonstrate that the models trained on augmented imagery generalize better than those trained on fully synthetic data or models trained on limited amounts of annotated real data.

avg

pdf Project Page [BibTex]

pdf Project Page [BibTex]


no image
Immersive Low-Cost Virtual Reality Treatment for Phantom Limb Pain: Evidence from Two Cases

Ambron, E., Miller, A., Kuchenbecker, K. J., Buxbaum, L. J., Coslett, H. B.

Frontiers in Neurology, 9(67):1-7, 2018 (article)

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Assessment methodology of promising porous materials for near ambient temperature hydrogen storage applications

Minuto, F. D., Balderas-Xicohténcatl, R., Policicchio, A., Hirscher, M., Agostino, R. G.

{International Journal of Hydrogen Energy}, 43(31):14550-14556, Elsevier, Amsterdam, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Incorporation of Terbium into a Microalga Leads to Magnetotactic Swimmers

Santomauro, G., Singh, A., Park, B. W., Mohammadrahimi, M., Erkoc, P., Goering, E., Schütz, G., Sitti, M., Bill, J.

Advanced Biosystems, 2(12):1800039, 2018 (article)

mms pi

[BibTex]

[BibTex]


no image
Thermodynamics, kinetics and selectivity of H2 and D2 on zeolite 5A below 77K

Xiong, R., Balderas-Xicohténcatl, R., Zhang, L., Li, P., Yao, Y., Sang, G., Chen, C., Tang, T., Luo, D., Hirscher, M.

{Microporous and Mesoporous Materials}, 264, pages: 22-27, Elsevier, Amsterdam, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Volumetric hydrogen storage capacity in metal-organic frameworks

Balderas-Xicohténcatl, R., Schlichtenmayer, M., Hirscher, M.

{Energy Technology}, 6(3):578-582, Wiley-VCH, Weinheim, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


Learning 3D Shape Completion under Weak Supervision
Learning 3D Shape Completion under Weak Supervision

Stutz, D., Geiger, A.

International Journal of Computer Vision (IJCV), 2018, 2018 (article)

Abstract
We address the problem of 3D shape completion from sparse and noisy point clouds, a fundamental problem in computer vision and robotics. Recent approaches are either data-driven or learning-based: Data-driven approaches rely on a shape model whose parameters are optimized to fit the observations; Learning-based approaches, in contrast, avoid the expensive optimization step by learning to directly predict complete shapes from incomplete observations in a fully-supervised setting. However, full supervision is often not available in practice. In this work, we propose a weakly-supervised learning-based approach to 3D shape completion which neither requires slow optimization nor direct supervision. While we also learn a shape prior on synthetic data, we amortize, i.e., learn, maximum likelihood fitting using deep neural networks resulting in efficient shape completion without sacrificing accuracy. On synthetic benchmarks based on ShapeNet and ModelNet as well as on real robotics data from KITTI and Kinect, we demonstrate that the proposed amortized maximum likelihood approach is able to compete with a fully supervised baseline and outperforms the data-driven approach of Engelmann et al., while requiring less supervision and being significantly faster.

avg

pdf Project Page [BibTex]

pdf Project Page [BibTex]


no image
3D nanoprinted plastic kinoform x-ray optics

Sanli, U. T., Ceylan, H., Bykova, I., Weigand, M., Sitti, M., Schütz, G., Keskinbora, K.

{Advanced Materials}, 30(36), Wiley-VCH, Weinheim, 2018 (article)

mms pi

DOI [BibTex]

DOI [BibTex]


no image
High volumetric hydrogen storage capacity using interpenetrated metal-organic frameworks

Balderas-Xicohténcatl, R., Schmieder, P., Denysenko, D., Volkmer, D., Hirscher, M.

{Energy Technology}, 6(3):510-512, Wiley-VCH, Weinheim, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


Object Scene Flow
Object Scene Flow

Menze, M., Heipke, C., Geiger, A.

ISPRS Journal of Photogrammetry and Remote Sensing, 2018 (article)

Abstract
This work investigates the estimation of dense three-dimensional motion fields, commonly referred to as scene flow. While great progress has been made in recent years, large displacements and adverse imaging conditions as observed in natural outdoor environments are still very challenging for current approaches to reconstruction and motion estimation. In this paper, we propose a unified random field model which reasons jointly about 3D scene flow as well as the location, shape and motion of vehicles in the observed scene. We formulate the problem as the task of decomposing the scene into a small number of rigidly moving objects sharing the same motion parameters. Thus, our formulation effectively introduces long-range spatial dependencies which commonly employed local rigidity priors are lacking. Our inference algorithm then estimates the association of image segments and object hypotheses together with their three-dimensional shape and motion. We demonstrate the potential of the proposed approach by introducing a novel challenging scene flow benchmark which allows for a thorough comparison of the proposed scene flow approach with respect to various baseline models. In contrast to previous benchmarks, our evaluation is the first to provide stereo and optical flow ground truth for dynamic real-world urban scenes at large scale. Our experiments reveal that rigid motion segmentation can be utilized as an effective regularizer for the scene flow problem, improving upon existing two-frame scene flow methods. At the same time, our method yields plausible object segmentations without requiring an explicitly trained recognition model for a specific object class.

avg

Project Page [BibTex]

Project Page [BibTex]


no image
Thick permalloy films for the imaging of spin texture dynamics in perpendicularly magnetized systems

Finizio, S., Wintz, S., Bracher, D., Kirk, E., Semisalova, A. S., Förster, J., Zeissler, K., We\ssels, T., Weigand, M., Lenz, K., Kleibert, A., Raabe, J.

{Physical Review B}, 98(10), American Physical Society, Woodbury, NY, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Dynamic Janus metasurfaces in the visible spectral region

Yu, P., Li, J., Zhang, S., Jin, Z., Schütz, G., Qiu, C., Hirscher, M., Liu, N.

{Nano Letters}, 18(7):4584-4589, American Chemical Society, Washington, DC, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Review of ultrafast demagnetization after femtosecond laser pulses: A complex interaction of light with quantum matter

Fähnle, M., Haag, M., Illg, C., Müller, B. Y., Weng, W., Tsatsoulis, T., Huang, H., Briones Paz, J. Z., Teeny, N., Zhang, L., Kuhn, T.

{American Journal of Modern Physics}, 7(2):68-74, Science Publishing Group, New York, NY, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Current-induced skyrmion generation through morphological thermal transitions in chiral ferromagnetic heterostructures

Lemesh, I., Litzius, K., Böttcher, M., Bassirian, P., Kerber, N., Heinze, D., Zázvorka, J., Büttner, F., Caretta, L., Mann, M., Weigand, M., Finizio, S., Raabe, J., Im, M., Stoll, H., Schütz, G., Dupé, B., Kläui, M., Beach, G. S. D.

{Advanced Materials}, 30(49), Wiley-VCH, Weinheim, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
3d nanofabrication of high-resolution multilayer Fresnel zone plates

Sanli, U. T., Jiao, C., Baluktsian, M., Grévent, C., Hahn, K., Wang, Y., Srot, V., Richter, G., Bykova, I., Weigand, M., Schütz, G., Keskinbora, K.

{Advanced Science}, 5(9), Wiley-VCH, Weinheim, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Photocatalytic CO2 reduction by Cr-substituted Ba2(In2-xCrx)O5\mbox⋅(H2O)δ(0.04 ≤x ≤0.60)

Yoon, S., Gaul, M., Sharma, S., Son, K., Hagemann, H., Ziegenbalg, D., Schwingenschlogl, U., Widenmeyer, M., Weidenkaff, A.

{Solid State Sciences}, 78, pages: 22-29, Elsevier Masson SAS, Paris, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Ferromagnetism in nitrogen and fluorine substituted BaTiO3

Yoon, S., Son, K., Ebbinghaus, S. G., Widenmeyer, M., Weidenkaff, A.

{Journal of Alloys and Compounds}, 749, pages: 628-633, Elsevier B.V., Lausanne, Switzerland, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Correction of axial position uncertainty and systematic detector errors in ptychographic diffraction imaging

Loetgering, L., Rose, M., Keskinbora, K., Baluktsian, M., Dogan, G., Sanli, U., Bykova, I., Weigand, M., Schütz, G., Wilhein, T.

{Optical Engineering}, 57(8), The Society, Redondo Beach, Calif., 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
The role of surface oxides on hydrogen sorption kinetics in titanium thin films

Hadjixenophontos, E., Michalek, L., Roussel, M., Hirscher, M., Schmitz, G.

{Applied Surface Science}, 441, pages: 324-330, Elsevier B.V., Amsterdam, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
New concepts for 3d optics in x-ray microscopy

Sanli, U., Ceylan, H., Jiao, C., Baluktsian, M., Grevent, C., Hahn, K., Wang, Y., Srot, V., Richter, G., Bykova, I., Weigand, M., Sitti, M., Schütz, G., Keskinbora, K.

{Microscopy and Microanalysis}, 24(Suppl 2):288-289, Cambridge University Press, New York, NY, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Spin-wave interference in magnetic vortex stacks

Behncke, C., Adolff, C. F., Lenzing, N., Hänze, M., Schulte, B., Weigand, M., Schütz, G., Meier, G.

{Communications Physics}, 1, Nature Publishing Group, London, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
High-throughput synthesis of modified Fresnel zone plate arrays via ion beam lithography

Keskinbora, K., Sanli, U. T., Baluktsian, M., Grévent, C., Weigand, M., Schütz, G.

{Beilstein Journal of Nanotechnology}, 9, pages: 2049-2056, Beilstein-Institut, Frankfurt am Main, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Deterministic creation and deletion of a single magnetic skyrmion observed by direct time-resolved X-ray microscopy

Woo, S., Song, K. M., Zhang, X., Ezawa, M., Zhou, Y., Liu, X., Weigand, M., Finizio, S., Raabe, J., Park, M.-C., Lee, K.-Y., Choi, J. W., Min, B.-C., Koo, H. C., Chang, J.

{Nature Electronics}, 1(5):288-296, Springer Nature, London, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic skyrmion as a nonlinear resistive element: A potential building block for reservoir computing

Prychynenko, D., Sitte, M., Litzius, K., Krüger, B., Bourianoff, G., Kläui, M., Sinova, J., Everschor-Sitte, K.

{Physical Review Applied}, 9(1), American Physical Society, College Park, Md. [u.a.], 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Tunable geometrical frustration in magnoic vortex crystals

Behncke, C., Adolff, C. F., Wintz, S., Hänze, M., Schulte, B., Weigand, M., Finizio, S., Raabe, J., Meier, G.

{Scientific Reports}, 8, Nature Publishing Group, London, UK, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]

2017


no image
Evaluation of High-Fidelity Simulation as a Training Tool in Transoral Robotic Surgery

Bur, A. M., Gomez, E. D., Newman, J. G., Weinstein, G. S., Bert W. O’Malley, J., Rassekh, C. H., Kuchenbecker, K. J.

Laryngoscope, 127(12):2790-2795, December 2017 (article)

hi

DOI [BibTex]

2017


DOI [BibTex]


no image
Using Contact Forces and Robot Arm Accelerations to Automatically Rate Surgeon Skill at Peg Transfer

Brown, J. D., O’Brien, C. E., Leung, S. C., Dumon, K. R., Lee, D. I., Kuchenbecker, K. J.

IEEE Transactions on Biomedical Engineering, 64(9):2263-2275, September 2017 (article)

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Ungrounded Haptic Augmented Reality System for Displaying Texture and Friction

Culbertson, H., Kuchenbecker, K. J.

IEEE/ASME Transactions on Mechatronics, 22(4):1839-1849, August 2017 (article)

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Perception of Force and Stiffness in the Presence of Low-Frequency Haptic Noise

Gurari, N., Okamura, A. M., Kuchenbecker, K. J.

PLoS ONE, 12(6):e0178605, June 2017 (article)

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Evaluation of a Vibrotactile Simulator for Dental Caries Detection

Kuchenbecker, K. J., Parajon, R., Maggio, M. P.

Simulation in Healthcare, 12(3):148-156, June 2017 (article)

hi

DOI [BibTex]

DOI [BibTex]


no image
Importance of Matching Physical Friction, Hardness, and Texture in Creating Realistic Haptic Virtual Surfaces

Culbertson, H., Kuchenbecker, K. J.

IEEE Transactions on Haptics, 10(1):63-74, January 2017 (article)

hi

[BibTex]


no image
Effects of Grip-Force, Contact, and Acceleration Feedback on a Teleoperated Pick-and-Place Task

Khurshid, R. P., Fitter, N. T., Fedalei, E. A., Kuchenbecker, K. J.

IEEE Transactions on Haptics, 10(1):40-53, January 2017 (article)

hi

[BibTex]

[BibTex]


no image
Self-Organized Behavior Generation for Musculoskeletal Robots

Der, R., Martius, G.

Frontiers in Neurorobotics, 11, pages: 8, 2017 (article)

al

link (url) DOI [BibTex]

link (url) DOI [BibTex]


{Temperature-dependent first-order reversal curve measurements on unusually hard magnetic low-temperature phase of MnBi}
Temperature-dependent first-order reversal curve measurements on unusually hard magnetic low-temperature phase of MnBi

Muralidhar, S., Gräfe, J., Chen, Y., Etter, M., Gregori, G., Ener, S., Sawatzki, S., Hono, K., Gutfleisch, O., Kronmüller, H., Schütz, G., Goering, E. J.

{Physical Review B}, 95(2), American Physical Society, Woodbury, NY, 2017 (article)

Abstract
We have performed first-order reversal curve (FORC) measurements to investigate the irreversible magnetization processes in the low-temperature phase of MnBi. Using temperature-dependent FORC analysis, we are able to provide a clear insight into the effects of microstructural parameters such as grain diameter, shape, and surface composition on the coercivity of nucleation hardened permanent magnet MnBi. FORC diagrams of MnBi show a unique broadening and narrowing of the coercive field distribution with increasing temperature. We were able to microscopically identify the reason for this behavior, based on the shift in the single domain critical diameter from nearly 1 to 2 μm, thereby changing the dependence of coercivity with particle size. This is based on a strong increase in the uniaxial anisotropy constant with increasing temperature. Furthermore, the results also give an additional confirmation that the magnetic hardening in low-temperature phase MnBi occurs due to nucleation mechanisms. In our case, we show that temperature-dependent FORC measurements provide a powerful tool for the microscopic understanding of high-performance permanent magnet systems.

mms

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Exploiting diffusion barrier and chemical affinity of metal-organic frameworks for efficient hydrogen isotope separation

Kim, J. Y., Balderas-Xicohténcatl, R., Zhang, L., Kang, S. G., Hirscher, M., Oh, H., Moon, H. R.

{Journal of the American Chemical Society}, 139(42):15135-15141, American Chemical Society, Washington, DC, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Facile fabrication of mesoporous silica micro-jets with multi-functionalities

Vilela, D., Hortelao, A. C., Balderas-Xicohténcatl, R., Hirscher, M., Hahn, K., Ma, X., Sánchez, S.

{Nanoscale}, 9(37):13990-13997, Royal Society of Chemistry, Cambridge, UK, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Functionalised metal-organic frameworks: a novel approach to stabilising single metal atoms

Szilágyi, P. Á., Rogers, D. M., Zaiser, I., Callini, E., Turner, S., Borgschulte, A., Züttel, A., Geerlings, H., Hirscher, M., Dam, B.

{Journal of Materials Chemistry A}, 5(30):15559-15566, Royal Society of Chemistry, Cambridge, UK, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Selective hydrogen isotope separation via breathing transition in MIL-53(Al)

Kim, J. Y., Zhang, L., Balderas-Xicohténcatl, R., Park, J., Hirscher, M., Moon, H. R., Oh, H.

{Journal of the American Chemical Society}, 139(49):17743-17746, American Chemical Society, Washington, DC, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Efficient synthesis for large-scale production and characterization for hydrogen storage of ligand exchanged MOF-74/174/184-M (M\textequalsMg2+, Ni2+)

Oh, H., Maurer, S., Balderas-Xicohténcatl, R., Arnold, L., Magdysyuk, O. V., Schütz, G., Müller, U., Hirscher, M.

{International Journal of Hydrogen Energy}, 42(2):1027-1035, Elsevier, Amsterdam, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


{Advanced magneto-optical Kerr effect measurements of superconductors at low temperatures}
Advanced magneto-optical Kerr effect measurements of superconductors at low temperatures

Stahl, C., Gräfe, J., Ruoß, S., Zahn, P., Bayer, J., Simmendinger, J., Schütz, G., Albrecht, J.

{AIP Advances}, 7(10), 2017 (article)

Abstract
Magneto-optical Kerr-effect (MOKE) measurements of superconducting films with soft-magnetic coatings are performed at low temperatures using a laser-based MOKE set-up. An elaborate measurement scheme with internal reference allows the quantitative comparison of the temperature dependent Kerr-amplitude with the magnetic field generated by supercurrents. For this purpose, an amorphous CoFeB thin film exhibiting a large Kerr-signal is deposited directly on top of the YBCO superconductor acting as field sensing layer. It is shown that the resulting magnetic hysteresis loops of the soft-magnetic film can be used to reconstruct the electric properties of the superconductor.

mms

DOI [BibTex]

DOI [BibTex]


Computer Vision for Autonomous Vehicles: Problems, Datasets and State-of-the-Art
Computer Vision for Autonomous Vehicles: Problems, Datasets and State-of-the-Art

Janai, J., Güney, F., Behl, A., Geiger, A.

Arxiv, 2017 (article)

Abstract
Recent years have witnessed amazing progress in AI related fields such as computer vision, machine learning and autonomous vehicles. As with any rapidly growing field, however, it becomes increasingly difficult to stay up-to-date or enter the field as a beginner. While several topic specific survey papers have been written, to date no general survey on problems, datasets and methods in computer vision for autonomous vehicles exists. This paper attempts to narrow this gap by providing a state-of-the-art survey on this topic. Our survey includes both the historically most relevant literature as well as the current state-of-the-art on several specific topics, including recognition, reconstruction, motion estimation, tracking, scene understanding and end-to-end learning. Towards this goal, we first provide a taxonomy to classify each approach and then analyze the performance of the state-of-the-art on several challenging benchmarking datasets including KITTI, ISPRS, MOT and Cityscapes. Besides, we discuss open problems and current research challenges. To ease accessibility and accommodate missing references, we will also provide an interactive platform which allows to navigate topics and methods, and provides additional information and project links for each paper.

avg

pdf Project Page Project Page [BibTex]


no image
Corrosion-protected hybrid nanoparticles

Jeong, H., Alarcón-Correa, M., Mark, A. G., Son, K., Lee, T., Fischer, P.

{Advanced Science}, 4(12), Wiley-VCH, Weinheim, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]