Header logo is


2019


Thumb xl screenshot 2019 04 08 at 16.22.00
Effect of Remote Masking on Detection of Electrovibration

Jamalzadeh, M., Güçlü, B., Vardar, Y., Basdogan, C.

In Proceedings of the IEEE World Haptics Conference (WHC), pages: 229-234, Tokyo, Japan, July 2019 (inproceedings)

Abstract
Masking has been used to study human perception of tactile stimuli, including those created on haptic touch screens. Earlier studies have investigated the effect of in-site masking on tactile perception of electrovibration. In this study, we investigated whether it is possible to change detection threshold of electrovibration at fingertip of index finger via remote masking, i.e. by applying a (mechanical) vibrotactile stimulus on the proximal phalanx of the same finger. The masking stimuli were generated by a voice coil (Haptuator). For eight participants, we first measured the detection thresholds for electrovibration at the fingertip and for vibrotactile stimuli at the proximal phalanx. Then, the vibrations on the skin were measured at four different locations on the index finger of subjects to investigate how the mechanical masking stimulus propagated as the masking level was varied. Finally, electrovibration thresholds measured in the presence of vibrotactile masking stimuli. Our results show that vibrotactile masking stimuli generated sub-threshold vibrations around fingertip, and hence did not mechanically interfere with the electrovibration stimulus. However, there was a clear psychophysical masking effect due to central neural processes. Electrovibration absolute threshold increased approximately 0.19 dB for each dB increase in the masking level.

hi

DOI [BibTex]

2019


DOI [BibTex]


no image
High-Fidelity Multiphysics Finite Element Modeling of Finger-Surface Interactions with Tactile Feedback

Serhat, G., Kuchenbecker, K. J.

Work-in-progress paper (2 pages) presented at the IEEE World Haptics Conference (WHC), Tokyo, Japan, July 2019 (misc)

Abstract
In this study, we develop a high-fidelity finite element (FE) analysis framework that enables multiphysics simulation of the human finger in contact with a surface that is providing tactile feedback. We aim to elucidate a variety of physical interactions that can occur at finger-surface interfaces, including contact, friction, vibration, and electrovibration. We also develop novel FE-based methods that will allow prediction of nonconventional features such as real finger-surface contact area and finger stickiness. We envision using the developed computational tools for efficient design and optimization of haptic devices by replacing expensive and lengthy experimental procedures with high-fidelity simulation.

hi

[BibTex]

[BibTex]


no image
Fingertip Friction Enhances Perception of Normal Force Changes

Gueorguiev, D., Lambert, J., Thonnard, J., Kuchenbecker, K. J.

Work-in-progress paper (2 pages) presented at the IEEE World Haptics Conference (WHC), Tokyo, Japan, July 2019 (misc)

Abstract
Using a force-controlled robotic platform, we tested the human perception of positive and negative modulations in normal force during passive dynamic touch, which also induced a strong related change in the finger-surface lateral force. In a two-alternative forced-choice task, eleven participants had to detect brief variations in the normal force compared to a constant controlled pre-stimulation force of 1 N and report whether it had increased or decreased. The average 75% just noticeable difference (JND) was found to be around 0.25 N for detecting the peak change and 0.30 N for correctly reporting the increase or the decrease. Interestingly, the friction coefficient of a subject’s fingertip positively correlated with his or her performance at detecting the change and reporting its direction, which suggests that humans may use the lateral force as a sensory cue to perceive variations in the normal force.

hi

[BibTex]

[BibTex]


Thumb xl image
Objective and Subjective Assessment of Algorithms for Reducing Three-Axis Vibrations to One-Axis Vibrations

Park, G., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference, pages: 467-472, July 2019 (inproceedings)

Abstract
A typical approach to creating realistic vibrotactile feedback is reducing 3D vibrations recorded by an accelerometer to 1D signals that can be played back on a haptic actuator, but some of the information is often lost in this dimensional reduction process. This paper describes seven representative algorithms and proposes four metrics based on the spectral match, the temporal match, and the average value and the variability of them across 3D rotations. These four performance metrics were applied to four texture recordings, and the method utilizing the discrete fourier transform (DFT) was found to be the best regardless of the sensing axis. We also recruited 16 participants to assess the perceptual similarity achieved by each algorithm in real time. We found the four metrics correlated well with the subjectively rated similarities for the six dimensional reduction algorithms, with the exception of taking the 3D vector magnitude, which was perceived to be good despite its low spectral and temporal match metrics.

hi

DOI [BibTex]

DOI [BibTex]


Thumb xl pocketrendering
Inflatable Haptic Sensor for the Torso of a Hugging Robot

Block, A. E., Kuchenbecker, K. J.

Work-in-progress paper (2 pages) presented at the IEEE World Haptics Conference (WHC), Tokyo, Japan, July 2019 (misc)

Abstract
During hugs, humans naturally provide and intuit subtle non-verbal cues that signify the strength and duration of an exchanged hug. Personal preferences for this close interaction may vary greatly between people; robots do not currently have the abilities to perceive or understand these preferences. This work-in-progress paper discusses designing, building, and testing a novel inflatable torso that can simultaneously soften a robot and act as a tactile sensor to enable more natural and responsive hugging. Using PVC vinyl, a microphone, and a barometric pressure sensor, we created a small test chamber to demonstrate a proof of concept for the full torso. While contacting the chamber in several ways common in hugs (pat, squeeze, scratch, and rub), we recorded data from the two sensors. The preliminary results suggest that the complementary haptic sensing channels allow us to detect coarse and fine contacts typically experienced during hugs, regardless of user hand placement.

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl figure1
Understanding the Pull-off Force of the Human Fingerpad

Nam, S., Kuchenbecker, K. J.

Work-in-progress paper (2 pages) presented at the IEEE World Haptics Conference (WHC), Tokyo, Japan, July 2019 (misc)

Abstract
To understand the adhesive force that occurs when a finger pulls off of a smooth surface, we built an apparatus to measure the fingerpad’s moisture, normal force, and real contact area over time during interactions with a glass plate. We recorded a total of 450 trials (45 interactions by each of ten human subjects), capturing a wide range of values across the aforementioned variables. The experimental results showed that the pull-off force increases with larger finger contact area and faster detachment rate. Additionally, moisture generally increases the contact area of the finger, but too much moisture can restrict the increase in the pull-off force.

hi

[BibTex]

[BibTex]


Thumb xl h a image3
The Haptician and the Alphamonsters

Forte, M. P., L’Orsa, R., Mohan, M., Nam, S., Kuchenbecker, K. J.

Student Innovation Challenge on Implementing Haptics in Virtual Reality Environment presented at the IEEE World Haptics Conference, Tokyo, Japan, July 2019, Maria Paola Forte, Rachael L'Orsa, Mayumi Mohan, and Saekwang Nam contributed equally to this publication (misc)

Abstract
Dysgraphia is a neurological disorder characterized by writing disabilities that affects between 7% and 15% of children. It presents itself in the form of unfinished letters, letter distortion, inconsistent letter size, letter collision, etc. Traditional therapeutic exercises require continuous assistance from teachers or occupational therapists. Autonomous partial or full haptic guidance can produce positive results, but children often become bored with the repetitive nature of such activities. Conversely, virtual rehabilitation with video games represents a new frontier for occupational therapy due to its highly motivational nature. Virtual reality (VR) adds an element of novelty and entertainment to therapy, thus motivating players to perform exercises more regularly. We propose leveraging the HTC VIVE Pro and the EXOS Wrist DK2 to create an immersive spellcasting “exergame” (exercise game) that helps motivate children with dysgraphia to improve writing fluency.

hi

Student Innovation Challenge – Virtual Reality [BibTex]

Student Innovation Challenge – Virtual Reality [BibTex]


Thumb xl screenshot 2019 04 08 at 16.08.19
Fingertip Interaction Metrics Correlate with Visual and Haptic Perception of Real Surfaces

Vardar, Y., Wallraven, C., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference (WHC), pages: 395-400, Tokyo, Japan, July 2019 (inproceedings)

Abstract
Both vision and touch contribute to the perception of real surfaces. Although there have been many studies on the individual contributions of each sense, it is still unclear how each modality’s information is processed and integrated. To fill this gap, we investigated the similarity of visual and haptic perceptual spaces, as well as how well they each correlate with fingertip interaction metrics. Twenty participants interacted with ten different surfaces from the Penn Haptic Texture Toolkit by either looking at or touching them and judged their similarity in pairs. By analyzing the resulting similarity ratings using multi-dimensional scaling (MDS), we found that surfaces are similarly organized within the three-dimensional perceptual spaces of both modalities. Also, between-participant correlations were significantly higher in the haptic condition. In a separate experiment, we obtained the contact forces and accelerations acting on one finger interacting with each surface in a controlled way. We analyzed the collected fingertip interaction data in both the time and frequency domains. Our results suggest that the three perceptual dimensions for each modality can be represented by roughness/smoothness, hardness/softness, and friction, and that these dimensions can be estimated by surface vibration power, tap spectral centroid, and kinetic friction coefficient, respectively.

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl s ban outdoors 1   small
Explorations of Shape-Changing Haptic Interfaces for Blind and Sighted Pedestrian Navigation

Spiers, A., Kuchenbecker, K. J.

pages: 6, Workshop paper (6 pages) presented at the CHI 2019 Workshop on Hacking Blind Navigation, May 2019 (misc) Accepted

Abstract
Since the 1960s, technologists have worked to develop systems that facilitate independent navigation by vision-impaired (VI) pedestrians. These devices vary in terms of conveyed information and feedback modality. Unfortunately, many such prototypes never progress beyond laboratory testing. Conversely, smartphone-based navigation systems for sighted pedestrians have grown in robustness and capabilities, to the point of now being ubiquitous. How can we leverage the success of sighted navigation technology, which is driven by a larger global market, as a way to progress VI navigation systems? We believe one possibility is to make common devices that benefit both VI and sighted individuals, by providing information in a way that does not distract either user from their tasks or environment. To this end we have developed physical interfaces that eschew visual, audio or vibratory feedback, instead relying on the natural human ability to perceive the shape of a handheld object.

hi

[BibTex]

[BibTex]


no image
Internal Array Electrodes Improve the Spatial Resolution of Soft Tactile Sensors Based on Electrical Resistance Tomography

Lee, H., Park, K., Kim, J., Kuchenbecker, K. J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 5411-5417, Montreal, Canada, May 2019, Hyosang Lee and Kyungseo Park contributed equally to this publication (inproceedings)

hi

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Thumb xl teaser awesome v2
Haptipedia: Accelerating Haptic Device Discovery to Support Interaction & Engineering Design

Seifi, H., Fazlollahi, F., Oppermann, M., Sastrillo, J. A., Ip, J., Agrawal, A., Park, G., Kuchenbecker, K. J., MacLean, K. E.

In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI), Glasgow, Scotland, May 2019 (inproceedings)

Abstract
Creating haptic experiences often entails inventing, modifying, or selecting specialized hardware. However, experience designers are rarely engineers, and 30 years of haptic inventions are buried in a fragmented literature that describes devices mechanically rather than by potential purpose. We conceived of Haptipedia to unlock this trove of examples: Haptipedia presents a device corpus for exploration through metadata that matter to both device and experience designers. It is a taxonomy of device attributes that go beyond physical description to capture potential utility, applied to a growing database of 105 grounded force-feedback devices, and accessed through a public visualization that links utility to morphology. Haptipedia's design was driven by both systematic review of the haptic device literature and rich input from diverse haptic designers. We describe Haptipedia's reception (including hopes it will redefine device reporting standards) and our plans for its sustainability through community participation.

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl robot
Improving Haptic Adjective Recognition with Unsupervised Feature Learning

Richardson, B. A., Kuchenbecker, K. J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 3804-3810, Montreal, Canada, May 2019 (inproceedings)

Abstract
Humans can form an impression of how a new object feels simply by touching its surfaces with the densely innervated skin of the fingertips. Many haptics researchers have recently been working to endow robots with similar levels of haptic intelligence, but these efforts almost always employ hand-crafted features, which are brittle, and concrete tasks, such as object recognition. We applied unsupervised feature learning methods, specifically K-SVD and Spatio-Temporal Hierarchical Matching Pursuit (ST-HMP), to rich multi-modal haptic data from a diverse dataset. We then tested the learned features on 19 more abstract binary classification tasks that center on haptic adjectives such as smooth and squishy. The learned features proved superior to traditional hand-crafted features by a large margin, almost doubling the average F1 score across all adjectives. Additionally, particular exploratory procedures (EPs) and sensor channels were found to support perception of certain haptic adjectives, underlining the need for diverse interactions and multi-modal haptic data.

hi

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Thumb xl learning tactile servoing thumbnail
Learning Latent Space Dynamics for Tactile Servoing

Sutanto, G., Ratliff, N., Sundaralingam, B., Chebotar, Y., Su, Z., Handa, A., Fox, D.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2019, IEEE, International Conference on Robotics and Automation, May 2019 (inproceedings) Accepted

am

pdf video [BibTex]

pdf video [BibTex]


no image
Bimanual Wrist-Squeezing Haptic Feedback Changes Speed-Force Tradeoff in Robotic Surgery Training

Cao, E., Machaca, S., Bernard, T., Wolfinger, B., Patterson, Z., Chi, A., Adrales, G. L., Kuchenbecker, K. J., Brown, J. D.

Extended abstract presented as an ePoster at the Annual Meeting of the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES), Baltimore, USA, April 2019 (misc) Accepted

hi

[BibTex]

[BibTex]


no image
Interactive Augmented Reality for Robot-Assisted Surgery

Forte, M. P., Kuchenbecker, K. J.

Extended abstract presented as an Emerging Technology ePoster at the Annual Meeting of the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES), Baltimore, Maryland, USA, April 2019 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl screenshot 2019 02 03 at 19.15.13
A Novel Texture Rendering Approach for Electrostatic Displays

Fiedler, T., Vardar, Y.

In Proceedings of International Workshop on Haptic and Audio Interaction Design (HAID), Lille, France, March 2019 (inproceedings)

Abstract
Generating realistic texture feelings on tactile displays using data-driven methods has attracted a lot of interest in the last decade. However, the need for large data storages and transmission rates complicates the use of these methods for the future commercial displays. In this paper, we propose a new texture rendering approach which can compress the texture data signicantly for electrostatic displays. Using three sample surfaces, we first explain how to record, analyze and compress the texture data, and render them on a touchscreen. Then, through psychophysical experiments conducted with nineteen participants, we show that the textures can be reproduced by a signicantly less number of frequency components than the ones in the original signal without inducing perceptual degradation. Moreover, our results indicate that the possible degree of compression is affected by the surface properties.

hi

Fiedler19-HAID-Electrostatic [BibTex]

Fiedler19-HAID-Electrostatic [BibTex]


no image
A Design Tool for Therapeutic Social-Physical Human-Robot Interactions

Mohan, M., Kuchenbecker, K. J.

Workshop paper (3 pages) presented at the HRI Pioneers Workshop, Daegu, South Korea, March 2019 (misc) Accepted

Abstract
We live in an aging society; social-physical human-robot interaction has the potential to keep our elderly adults healthy by motivating them to exercise. After summarizing prior work, this paper proposes a tool that can be used to design exercise and therapy interactions to be performed by an upper-body humanoid robot. The interaction design tool comprises a teleoperation system that transmits the operator’s arm motions, head motions and facial expression along with an interface to monitor and assess the motion of the user interacting with the robot. We plan to use this platform to create dynamic and intuitive exercise interactions.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
How Does It Feel to Clap Hands with a Robot?

Fitter, N. T., Kuchenbecker, K. J.

International Journal of Social Robotics, 2019 (article) Accepted

Abstract
Future robots may need lighthearted physical interaction capabilities to connect with people in meaningful ways. To begin exploring how users perceive playful human–robot hand-to-hand interaction, we conducted a study with 20 participants. Each user played simple hand-clapping games with the Rethink Robotics Baxter Research Robot during a 1-h-long session involving 24 randomly ordered conditions that varied in facial reactivity, physical reactivity, arm stiffness, and clapping tempo. Survey data and experiment recordings demonstrate that this interaction is viable: all users successfully completed the experiment and mentioned enjoying at least one game without prompting. Hand-clapping tempo was highly salient to users, and human-like robot errors were more widely accepted than mechanical errors. Furthermore, perceptions of Baxter varied in the following statistically significant ways: facial reactivity increased the robot’s perceived pleasantness and energeticness; physical reactivity decreased pleasantness, energeticness, and dominance; higher arm stiffness increased safety and decreased dominance; and faster tempo increased energeticness and increased dominance. These findings can motivate and guide roboticists who want to design social–physical human–robot interactions.

hi

[BibTex]

[BibTex]


Thumb xl teaser
Toward Expert-Sourcing of a Haptic Device Repository

Seifi, H., Ip, J., Agrawal, A., Kuchenbecker, K. J., MacLean, K. E.

Glasgow, UK, 2019 (misc)

Abstract
Haptipedia is an online taxonomy, database, and visualization that aims to accelerate ideation of new haptic devices and interactions in human-computer interaction, virtual reality, haptics, and robotics. The current version of Haptipedia (105 devices) was created through iterative design, data entry, and evaluation by our team of experts. Next, we aim to greatly increase the number of devices and keep Haptipedia updated by soliciting data entry and verification from haptics experts worldwide.

hi

link (url) [BibTex]

link (url) [BibTex]


Thumb xl screenshot from 2019 03 21 12 11 19
Automated Generation of Reactive Programs from Human Demonstration for Orchestration of Robot Behaviors

Berenz, V., Bjelic, A., Mainprice, J.

ArXiv, 2019 (article)

Abstract
Social robots or collaborative robots that have to interact with people in a reactive way are difficult to program. This difficulty stems from the different skills required by the programmer: to provide an engaging user experience the behavior must include a sense of aesthetics while robustly operating in a continuously changing environment. The Playful framework allows composing such dynamic behaviors using a basic set of action and perception primitives. Within this framework, a behavior is encoded as a list of declarative statements corresponding to high-level sensory-motor couplings. To facilitate non-expert users to program such behaviors, we propose a Learning from Demonstration (LfD) technique that maps motion capture of humans directly to a Playful script. The approach proceeds by identifying the sensory-motor couplings that are active at each step using the Viterbi path in a Hidden Markov Model (HMM). Given these activation patterns, binary classifiers called evaluations are trained to associate activations to sensory data. Modularity is increased by clustering the sensory-motor couplings, leading to a hierarchical tree structure. The novelty of the proposed approach is that the learned behavior is encoded not in terms of trajectories in a task space, but as couplings between sensory information and high-level motor actions. This provides advantages in terms of behavioral generalization and reactivity displayed by the robot.

am

Support Video link (url) [BibTex]

2005


no image
Composite adaptive control with locally weighted statistical learning

Nakanishi, J., Farrell, J. A., Schaal, S.

Neural Networks, 18(1):71-90, January 2005, clmc (article)

Abstract
This paper introduces a provably stable learning adaptive control framework with statistical learning. The proposed algorithm employs nonlinear function approximation with automatic growth of the learning network according to the nonlinearities and the working domain of the control system. The unknown function in the dynamical system is approximated by piecewise linear models using a nonparametric regression technique. Local models are allocated as necessary and their parameters are optimized on-line. Inspired by composite adaptive control methods, the proposed learning adaptive control algorithm uses both the tracking error and the estimation error to update the parameters. We first discuss statistical learning of nonlinear functions, and motivate our choice of the locally weighted learning framework. Second, we begin with a class of first order SISO systems for theoretical development of our learning adaptive control framework, and present a stability proof including a parameter projection method that is needed to avoid potential singularities during adaptation. Then, we generalize our adaptive controller to higher order SISO systems, and discuss further extension to MIMO problems. Finally, we evaluate our theoretical control framework in numerical simulations to illustrate the effectiveness of the proposed learning adaptive controller for rapid convergence and high accuracy of control.

am

link (url) [BibTex]

2005


link (url) [BibTex]


no image
Natural Actor-Critic

Peters, J., Vijayakumar, S., Schaal, S.

In Proceedings of the 16th European Conference on Machine Learning, 3720, pages: 280-291, (Editors: Gama, J.;Camacho, R.;Brazdil, P.;Jorge, A.;Torgo, L.), Springer, ECML, 2005, clmc (inproceedings)

Abstract
This paper investigates a novel model-free reinforcement learning architecture, the Natural Actor-Critic. The actor updates are based on stochastic policy gradients employing AmariÕs natural gradient approach, while the critic obtains both the natural policy gradient and additional parameters of a value function simultaneously by linear regres- sion. We show that actor improvements with natural policy gradients are particularly appealing as these are independent of coordinate frame of the chosen policy representation, and can be estimated more efficiently than regular policy gradients. The critic makes use of a special basis function parameterization motivated by the policy-gradient compatible function approximation. We show that several well-known reinforcement learning methods such as the original Actor-Critic and BradtkeÕs Linear Quadratic Q-Learning are in fact Natural Actor-Critic algorithms. Em- pirical evaluations illustrate the effectiveness of our techniques in com- parison to previous methods, and also demonstrate their applicability for learning control on an anthropomorphic robot arm.

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Comparative experiments on task space control with redundancy resolution

Nakanishi, J., Cory, R., Mistry, M., Peters, J., Schaal, S.

In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 3901-3908, Edmonton, Alberta, Canada, Aug. 2-6, IROS, 2005, clmc (inproceedings)

Abstract
Understanding the principles of motor coordination with redundant degrees of freedom still remains a challenging problem, particularly for new research in highly redundant robots like humanoids. Even after more than a decade of research, task space control with redundacy resolution still remains an incompletely understood theoretical topic, and also lacks a larger body of thorough experimental investigation on complex robotic systems. This paper presents our first steps towards the development of a working redundancy resolution algorithm which is robust against modeling errors and unforeseen disturbances arising from contact forces. To gain a better understanding of the pros and cons of different approaches to redundancy resolution, we focus on a comparative empirical evaluation. First, we review several redundancy resolution schemes at the velocity, acceleration and torque levels presented in the literature in a common notational framework and also introduce some new variants of these previous approaches. Second, we present experimental comparisons of these approaches on a seven-degree-of-freedom anthropomorphic robot arm. Surprisingly, one of our simplest algorithms empirically demonstrates the best performance, despite, from a theoretical point, the algorithm does not share the same beauty as some of the other methods. Finally, we discuss practical properties of these control algorithms, particularly in light of inevitable modeling errors of the robot dynamics.

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A model of smooth pursuit based on learning of the target dynamics using only retinal signals

Shibata, T., Tabata, H., Schaal, S., Kawato, M.

Neural Networks, 18, pages: 213-225, 2005, clmc (article)

Abstract
While the predictive nature of the primate smooth pursuit system has been evident through several behavioural and neurophysiological experiments, few models have attempted to explain these results comprehensively. The model we propose in this paper in line with previous models employing optimal control theory; however, we hypothesize two new issues: (1) the medical superior temporal (MST) area in the cerebral cortex implements a recurrent neural network (RNN) in order to predict the current or future target velocity, and (2) a forward model of the target motion is acquired by on-line learning. We use stimulation studies to demonstrate how our new model supports these hypotheses.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Linear and Nonlinear Estimation models applied to Hemodynamic Model

Theodorou, E.

Technical Report-2005-1, Computational Action and Vision Lab University of Minnesota, 2005, clmc (techreport)

Abstract
The relation between BOLD signal and neural activity is still poorly understood. The Gaussian Linear Model known as GLM is broadly used in many fMRI data analysis for recovering the underlying neural activity. Although GLM has been proved to be a really useful tool for analyzing fMRI data it can not be used for describing the complex biophysical process of neural metabolism. In this technical report we make use of a system of Stochastic Differential Equations that is based on Buxton model [1] for describing the underlying computational principles of hemodynamic process. Based on this SDE we built a Kalman Filter estimator so as to estimate the induced neural signal as well as the blood inflow under physiologic and sensor noise. The performance of Kalman Filter estimator is investigated under different physiologic noise characteristics and measurement frequencies.

am

PDF [BibTex]

PDF [BibTex]


no image
Predicting EMG Data from M1 Neurons with Variational Bayesian Least Squares

Ting, J., D’Souza, A., Yamamoto, K., Yoshioka, T., Hoffman, D., Kakei, S., Sergio, L., Kalaska, J., Kawato, M., Strick, P., Schaal, S.

In Advances in Neural Information Processing Systems 18 (NIPS 2005), (Editors: Weiss, Y.;Schölkopf, B.;Platt, J.), Cambridge, MA: MIT Press, Vancouver, BC, Dec. 6-11, 2005, clmc (inproceedings)

Abstract
An increasing number of projects in neuroscience requires the statistical analysis of high dimensional data sets, as, for instance, in predicting behavior from neural firing, or in operating artificial devices from brain recordings in brain-machine interfaces. Linear analysis techniques remain prevalent in such cases, but classi-cal linear regression approaches are often numercially too fragile in high dimen-sions. In this paper, we address the question of whether EMG data collected from arm movements of monkeys can be faithfully reconstructed with linear ap-proaches from neural activity in primary motor cortex (M1). To achieve robust data analysis, we develop a full Bayesian approach to linear regression that automatically detects and excludes irrelevant features in the data, and regular-izes against overfitting. In comparison with ordinary least squares, stepwise re-gression, partial least squares, and a brute force combinatorial search for the most predictive input features in the data, we demonstrate that the new Bayesian method offers a superior mixture of characteristics in terms of regularization against overfitting, computational efficiency, and ease of use, demonstrating its potential as a drop-in replacement for other linear regression techniques. As neuroscientific results, our analyses demonstrate that EMG data can be well pre-dicted from M1 neurons, further opening the path for possible real-time inter-faces between brains and machines.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Rapbid synchronization and accurate phase-locking of rhythmic motor primitives

Pongas, D., Billard, A., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2005), pages: 2911-2916, Edmonton, Alberta, Canada, Aug. 2-6, 2005, clmc (inproceedings)

Abstract
Rhythmic movement is ubiquitous in human and animal behavior, e.g., as in locomotion, dancing, swimming, chewing, scratching, music playing, etc. A particular feature of rhythmic movement in biology is the rapid synchronization and phase locking with other rhythmic events in the environment, for instance music or visual stimuli as in ball juggling. In traditional oscillator theories to rhythmic movement generation, synchronization with another signal is relatively slow, and it is not easy to achieve accurate phase locking with a particular feature of the driving stimulus. Using a recently developed framework of dynamic motor primitives, we demonstrate a novel algorithm for very rapid synchronizaton of a rhythmic movement pattern, which can phase lock any feature of the movement to any particulur event in the driving stimulus. As an example application, we demonstrate how an anthropomorphic robot can use imitation learning to acquire a complex rumming pattern and keep it synchronized with an external rhythm generator that changes its frequency over time.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Parametric and Non-Parametric approaches for nonlinear tracking of moving objects

Hidaka, Y, Theodorou, E.

Technical Report-2005-1, 2005, clmc (article)

am

PDF [BibTex]

PDF [BibTex]


no image
A new methodology for robot control design

Peters, J., Mistry, M., Udwadia, F. E., Schaal, S.

In The 5th ASME International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC 2005), Long Beach, CA, Sept. 24-28, 2005, clmc (inproceedings)

Abstract
Gauss principle of least constraint and its generalizations have provided a useful insights for the development of tracking controllers for mechanical systems (Udwadia,2003). Using this concept, we present a novel methodology for the design of a specific class of robot controllers. With our new framework, we demonstrate that well-known and also several novel nonlinear robot control laws can be derived from this generic framework, and show experimental verifications on a Sarcos Master Arm robot for some of these controllers. We believe that the suggested approach unifies and simplifies the design of optimal nonlinear control laws for robots obeying rigid body dynamics equations, both with or without external constraints, holonomic or nonholonomic constraints, with over-actuation or underactuation, as well as open-chain and closed-chain kinematics.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Arm movement experiments with joint space force fields using an exoskeleton robot

Mistry, M., Mohajerian, P., Schaal, S.

In IEEE Ninth International Conference on Rehabilitation Robotics, pages: 408-413, Chicago, Illinois, June 28-July 1, 2005, clmc (inproceedings)

Abstract
A new experimental platform permits us to study a novel variety of issues of human motor control, particularly full 3-D movements involving the major seven degrees-of-freedom (DOF) of the human arm. We incorporate a seven DOF robot exoskeleton, and can minimize weight and inertia through gravity, Coriolis, and inertia compensation, such that subjects' arm movements are largely unaffected by the manipulandum. Torque perturbations can be individually applied to any or all seven joints of the human arm, thus creating novel dynamic environments, or force fields, for subjects to respond and adapt to. Our first study investigates a joint space force field where the shoulder velocity drives a disturbing force in the elbow joint. Results demonstrate that subjects learn to compensate for the force field within about 100 trials, and from the strong presence of aftereffects when removing the field in some randomized catch trials, that an inverse dynamics, or internal model, of the force field is formed by the nervous system. Interestingly, while post-learning hand trajectories return to baseline, joint space trajectories remained changed in response to the field, indicating that besides learning a model of the force field, the nervous system also chose to exploit the space to minimize the effects of the force field on the realization of the endpoint trajectory plan. Further applications for our apparatus include studies in motor system redundancy resolution and inverse kinematics, as well as rehabilitation.

am

link (url) [BibTex]

link (url) [BibTex]


no image
A unifying framework for the control of robotics systems

Peters, J., Mistry, M., Udwadia, F. E., Cory, R., Nakanishi, J., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2005), pages: 1824-1831, Edmonton, Alberta, Canada, Aug. 2-6, 2005, clmc (inproceedings)

Abstract
Recently, [1] suggested to derive tracking controllers for mechanical systems using a generalization of GaussÕ principle of least constraint. This method al-lows us to reformulate control problems as a special class of optimal control. We take this line of reasoning one step further and demonstrate that well-known and also several novel nonlinear robot control laws can be derived from this generic methodology. We show experimental verifications on a Sar-cos Master Arm robot for some of the the derived controllers.We believe that the suggested approach offers a promising unification and simplification of nonlinear control law design for robots obeying rigid body dynamics equa-tions, both with or without external constraints, with over-actuation or under-actuation, as well as open-chain and closed-chain kinematics.

am

link (url) [BibTex]

link (url) [BibTex]