Header logo is


2013


no image
A Practical System For Recording Instrument Interactions During Live Robotic Surgery

McMahan, W., Gomez, E. D., Chen, L., Bark, K., Nappo, J. C., Koch, E. I., Lee, D. I., Dumon, K., Williams, N., Kuchenbecker, K. J.

Journal of Robotic Surgery, 7(4):351-358, 2013 (article)

hi

[BibTex]

2013


[BibTex]


Thumb xl impact battery
Probabilistic Object Tracking Using a Range Camera

Wüthrich, M., Pastor, P., Kalakrishnan, M., Bohg, J., Schaal, S.

In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 3195-3202, IEEE, November 2013 (inproceedings)

Abstract
We address the problem of tracking the 6-DoF pose of an object while it is being manipulated by a human or a robot. We use a dynamic Bayesian network to perform inference and compute a posterior distribution over the current object pose. Depending on whether a robot or a human manipulates the object, we employ a process model with or without knowledge of control inputs. Observations are obtained from a range camera. As opposed to previous object tracking methods, we explicitly model self-occlusions and occlusions from the environment, e.g, the human or robotic hand. This leads to a strongly non-linear observation model and additional dependencies in the Bayesian network. We employ a Rao-Blackwellised particle filter to compute an estimate of the object pose at every time step. In a set of experiments, we demonstrate the ability of our method to accurately and robustly track the object pose in real-time while it is being manipulated by a human or a robot.

am

arXiv Video Code Video DOI Project Page [BibTex]

arXiv Video Code Video DOI Project Page [BibTex]


no image
Virtual Robotization of the Human Body via Data-Driven Vibrotactile Feedback

Kurihara, Y., Hachisu, T., Kuchenbecker, K. J., Kajimoto, H.

In Proc. International Conference on Advances in Computer Entertainment Technology (ACE), 8253, pages: 109-122, Lecture Notes in Computer Science, Springer, Enschede, Netherlands, 2013, Oral presentation given by Kurihara. Best Paper Silver Award (inproceedings)

hi

[BibTex]

[BibTex]


no image
Jointonation: Robotization of the Human Body by Vibrotactile Feedback

Kurihara, Y., Hachisu, T., Kuchenbecker, K. J., Kajimoto, H.

Emerging Technologies Demonstration with Talk at ACM SIGGRAPH Asia, Hong Kong, November 2013, Hands-on demonstration given by Kurihara, Takei, and Nakai. Best Demonstration Award as voted by the Program Committee (misc)

hi

[BibTex]

[BibTex]


Thumb xl multi modal
3-D Object Reconstruction of Symmetric Objects by Fusing Visual and Tactile Sensing

Illonen, J., Bohg, J., Kyrki, V.

The International Journal of Robotics Research, 33(2):321-341, Sage, October 2013 (article)

Abstract
In this work, we propose to reconstruct a complete 3-D model of an unknown object by fusion of visual and tactile information while the object is grasped. Assuming the object is symmetric, a first hypothesis of its complete 3-D shape is generated. A grasp is executed on the object with a robotic manipulator equipped with tactile sensors. Given the detected contacts between the fingers and the object, the initial full object model including the symmetry parameters can be refined. This refined model will then allow the planning of more complex manipulation tasks. The main contribution of this work is an optimal estimation approach for the fusion of visual and tactile data applying the constraint of object symmetry. The fusion is formulated as a state estimation problem and solved with an iterative extended Kalman filter. The approach is validated experimentally using both artificial and real data from two different robotic platforms.

am

Web DOI Project Page [BibTex]

Web DOI Project Page [BibTex]


no image
Vibrotactile Display: Perception, Technology, and Applications

Choi, S., Kuchenbecker, K. J.

Proceedings of the IEEE, 101(9):2093-2104, sep 2013 (article)

hi

[BibTex]

[BibTex]


no image
Virtual Robotization of the Human Body Using Vibration Recording, Modeling and Rendering

Kurihara, Y., Hachisu, T., Kuchenbecker, K. J., Kajimoto, H.

In Proc. Virtual Reality Society of Japan Annual Conference, Osaka, Japan, sep 2013, Paper written in Japanese. Presentation given by Kurihara (inproceedings)

hi

[BibTex]

[BibTex]


Thumb xl submodularity nips
Learning and Optimization with Submodular Functions

Sankaran, B., Ghazvininejad, M., He, X., Kale, D., Cohen, L.

ArXiv, May 2013 (techreport)

Abstract
In many naturally occurring optimization problems one needs to ensure that the definition of the optimization problem lends itself to solutions that are tractable to compute. In cases where exact solutions cannot be computed tractably, it is beneficial to have strong guarantees on the tractable approximate solutions. In order operate under these criterion most optimization problems are cast under the umbrella of convexity or submodularity. In this report we will study design and optimization over a common class of functions called submodular functions. Set functions, and specifically submodular set functions, characterize a wide variety of naturally occurring optimization problems, and the property of submodularity of set functions has deep theoretical consequences with wide ranging applications. Informally, the property of submodularity of set functions concerns the intuitive principle of diminishing returns. This property states that adding an element to a smaller set has more value than adding it to a larger set. Common examples of submodular monotone functions are entropies, concave functions of cardinality, and matroid rank functions; non-monotone examples include graph cuts, network flows, and mutual information. In this paper we will review the formal definition of submodularity; the optimization of submodular functions, both maximization and minimization; and finally discuss some applications in relation to learning and reasoning using submodular functions.

am

arxiv link (url) [BibTex]

arxiv link (url) [BibTex]


Thumb xl featureextraction
Hypothesis Testing Framework for Active Object Detection

Sankaran, B., Atanasov, N., Le Ny, J., Koletschka, T., Pappas, G., Daniilidis, K.

In IEEE International Conference on Robotics and Automation (ICRA), May 2013, clmc (inproceedings)

Abstract
One of the central problems in computer vision is the detection of semantically important objects and the estimation of their pose. Most of the work in object detection has been based on single image processing and its performance is limited by occlusions and ambiguity in appearance and geometry. This paper proposes an active approach to object detection by controlling the point of view of a mobile depth camera. When an initial static detection phase identifies an object of interest, several hypotheses are made about its class and orientation. The sensor then plans a sequence of view-points, which balances the amount of energy used to move with the chance of identifying the correct hypothesis. We formulate an active M-ary hypothesis testing problem, which includes sensor mobility, and solve it using a point-based approximate POMDP algorithm. The validity of our approach is verified through simulation and experiments with real scenes captured by a kinect sensor. The results suggest a significant improvement over static object detection.

am

pdf [BibTex]

pdf [BibTex]


no image
Virtual Alteration of Body Material by Reality-Based Periodic Vibrotactile Feedback

Kurihara, Y., Hachisu, T., Sato, M., Fukushima, S., Kuchenbecker, K. J., Kajimoto, H.

In Proc. JSME Robotics and Mechatronics Conference (ROBOMEC), Tsukuba, Japan, May 2013, Paper written in Japanese. Poster presentation given by {Kurihara} (inproceedings)

hi

[BibTex]

[BibTex]


no image
The Design and Field Observation of a Haptic Notification System for Oral Presentations

Tam, D., MacLean, K. E., McGrenere, J., Kuchenbecker, K. J.

In Proc. SIGCHI Conference on Human Factors in Computing Systems, pages: 1689-1698, Paris, France, May 2013, Oral presentation given by Tam (inproceedings)

hi

[BibTex]

[BibTex]


no image
Using Robotic Exploratory Procedures to Learn the Meaning of Haptic Adjectives

Chu, V., McMahon, I., Riano, L., McDonald, C. G., He, Q., Perez-Tejada, J. M., Arrigo, M., Fitter, N., Nappo, J., Darrell, T., Kuchenbecker, K. J.

In Proc. IEEE International Conference on Robotics and Automation, pages: 3048-3055, Karlsruhe, Germany, May 2013, Oral presentation given by Chu. Best Cognitive Robotics Paper Award (inproceedings)

hi

[BibTex]

[BibTex]


no image
Instrument contact vibrations are a construct-valid measure of technical skill in Fundamentals of Laparoscopic Surgery Training Tasks

Gomez, E. D., Aggarwal, R., McMahan, W., Koch, E., Hashimoto, D. A., Darzi, A., Murayama, K. M., Dumon, K. R., Williams, N. N., Kuchenbecker, K. J.

In Proc. Annual Meeting of the Association for Surgical Education, Orlando, Florida, USA, 2013, Oral presentation given by Gomez (inproceedings)

hi

[BibTex]

[BibTex]


no image
Dynamic Simulation of Tool-Mediated Texture Interaction

McDonald, C. G., Kuchenbecker, K. J.

In Proc. IEEE World Haptics Conference, pages: 307-312, Daejeon, South Korea, April 2013, Oral presentation given by McDonald (inproceedings)

hi

[BibTex]

[BibTex]


no image
ROS Open-source Audio Recognizer: ROAR Environmental Sound Detection Tools for Robot Programming

Romano, J. M., Brindza, J. P., Kuchenbecker, K. J.

Autonomous Robots, 34(3):207-215, April 2013 (article)

hi

[BibTex]

[BibTex]


no image
Generating Haptic Texture Models From Unconstrained Tool-Surface Interactions

Culbertson, H., Unwin, J., Goodman, B. E., Kuchenbecker, K. J.

In Proc. IEEE World Haptics Conference, pages: 295-300, Daejeon, South Korea, April 2013, Oral presentation given by Culbertson. Finalist for Best Paper Award (inproceedings)

hi

[BibTex]

[BibTex]


no image
Data-Driven Modeling and Rendering of Isotropic Textures

Culbertson, H., McDonald, C. G., Goodman, B. E., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE World Haptics Conference, Daejeon, South Korea, April 2013, Best Demonstration Award (by audience vote) (misc)

hi

[BibTex]

[BibTex]


no image
A practical System for Recording Instrument Contacts and Collisions During Transoral Robotic Surgery

Gomez, E. D., Weinstein, G. S., O’Malley, J. B. W., McMahan, W., Chen, L., Kuchenbecker, K. J.

In Proc. Annual Meeting of the Triological Society, Orlando, Florida, USA, April 2013, Poster presentation given by Gomez (inproceedings)

hi

[BibTex]

[BibTex]


no image
Adding Haptics to Robotic Surgery

J. Kuchenbecker, K., Brzezinski, A., D. Gomez, E., Gosselin, M., Hui, J., Koch, E., Koehn, J., McMahan, W., Mahajan, K., Nappo, J., Shah, N.

Learning Center Station at SAGES (Society of American Gastrointestinal and Endoscopic Surgeons) Annual Meeting, Baltimore, Maryland, USA, April 2013 (misc)

hi

[BibTex]

[BibTex]


no image
In Vivo Validation of a System for Haptic Feedback of Tool Vibrations in Robotic Surgery

Bark, K., McMahan, W., Remington, A., Gewirtz, J., Wedmid, A., Lee, D. I., Kuchenbecker, K. J.

Surgical Endoscopy, 27(2):656-664, February 2013, dynamic article (paper plus video), available at \href{http://www.springerlink.com/content/417j532708417342/}{http://www.springerlink.com/content/417j532708417342/} (article)

hi

[BibTex]

[BibTex]


no image
Action and Goal Related Decision Variables Modulate the Competition Between Multiple Potential Targets

Enachescu, V, Christopoulos, Vassilios N, Schrater, P. R., Schaal, S.

In Abstracts of Neural Control of Movement Conference (NCM 2013), February 2013 (inproceedings)

am

[BibTex]

[BibTex]


no image
Perception of Springs with Visual and Proprioceptive Motion Cues: Implications for Prosthetics

Gurari, N., Kuchenbecker, K. J., Okamura, A. M.

IEEE Transactions on Human-Machine Systems, 43, pages: 102-114, January 2013, \href{http://www.youtube.com/watch?v=DBRw87Wk29E\&feature=youtu.be}{Video} (article)

hi

[BibTex]

[BibTex]


Thumb xl synergy
The functional role of automatic body response in shaping voluntary actions based on muscle synergy theory

Alnajjar, F. S., Berenz, V., Shimoda, S.

In Neural Engineering (NER), 2013 6th International IEEE/EMBS Conference on, pages: 1230-1233, 2013 (inproceedings)

am

DOI [BibTex]

DOI [BibTex]


no image
Optimal control of reaching includes kinematic constraints

Mistry, M., Theodorou, E., Schaal, S., Kawato, M.

Journal of Neurophysiology, 2013, clmc (article)

Abstract
We investigate adaptation under a reaching task with an acceleration-based force field perturbation designed to alter the nominal straight hand trajectory in a potentially benign manner:pushing the hand of course in one direction before subsequently restoring towards the target. In this particular task, an explicit strategy to reduce motor effort requires a distinct deviation from the nominal rectilinear hand trajectory. Rather, our results display a clear directional preference during learning, as subjects adapted perturbed curved trajectories towards their initial baselines. We model this behavior using the framework of stochastic optimal control theory and an objective function that trades-of the discordant requirements of 1) target accuracy, 2) motor effort, and 3) desired trajectory. Our work addresses the underlying objective of a reaching movement, and we suggest that robustness, particularly against internal model uncertainly, is as essential to the reaching task as terminal accuracy and energy effciency.

am

PDF [BibTex]

PDF [BibTex]


Thumb xl hri
Coaching robots with biosignals based on human affective social behaviors

Suzuki, K., Gruebler, A., Berenz, V.

In ACM/IEEE International Conference on Human-Robot Interaction, HRI 2013, Tokyo, Japan, March 3-6, 2013, pages: 419-420, 2013 (inproceedings)

am

link (url) [BibTex]

link (url) [BibTex]


no image
Expectation and Attention in Hierarchical Auditory Prediction

Chennu, S., Noreika, V., Gueorguiev, D., Blenkmann, A., Kochen, S., Ibáñez, A., Owen, A. M., Bekinschtein, T. A.

Journal of Neuroscience, 33(27):11194-11205, Society for Neuroscience, 2013 (article)

Abstract
Hierarchical predictive coding suggests that attention in humans emerges from increased precision in probabilistic inference, whereas expectation biases attention in favor of contextually anticipated stimuli. We test these notions within auditory perception by independently manipulating top-down expectation and attentional precision alongside bottom-up stimulus predictability. Our findings support an integrative interpretation of commonly observed electrophysiological signatures of neurodynamics, namely mismatch negativity (MMN), P300, and contingent negative variation (CNV), as manifestations along successive levels of predictive complexity. Early first-level processing indexed by the MMN was sensitive to stimulus predictability: here, attentional precision enhanced early responses, but explicit top-down expectation diminished it. This pattern was in contrast to later, second-level processing indexed by the P300: although sensitive to the degree of predictability, responses at this level were contingent on attentional engagement and in fact sharpened by top-down expectation. At the highest level, the drift of the CNV was a fine-grained marker of top-down expectation itself. Source reconstruction of high-density EEG, supported by intracranial recordings, implicated temporal and frontal regions differentially active at early and late levels. The cortical generators of the CNV suggested that it might be involved in facilitating the consolidation of context-salient stimuli into conscious perception. These results provide convergent empirical support to promising recent accounts of attention and expectation in predictive coding.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl screen shot 2015 08 23 at 00.29.36
Fusing visual and tactile sensing for 3-D object reconstruction while grasping

Ilonen, J., Bohg, J., Kyrki, V.

In IEEE International Conference on Robotics and Automation (ICRA), pages: 3547-3554, 2013 (inproceedings)

Abstract
In this work, we propose to reconstruct a complete 3-D model of an unknown object by fusion of visual and tactile information while the object is grasped. Assuming the object is symmetric, a first hypothesis of its complete 3-D shape is generated from a single view. This initial model is used to plan a grasp on the object which is then executed with a robotic manipulator equipped with tactile sensors. Given the detected contacts between the fingers and the object, the full object model including the symmetry parameters can be refined. This refined model will then allow the planning of more complex manipulation tasks. The main contribution of this work is an optimal estimation approach for the fusion of visual and tactile data applying the constraint of object symmetry. The fusion is formulated as a state estimation problem and solved with an iterative extended Kalman filter. The approach is validated experimentally using both artificial and real data from two different robotic platforms.

am

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Dynamical Movement Primitives: Learning Attractor Models for Motor Behaviors

Ijspeert, A., Nakanishi, J., Pastor, P., Hoffmann, H., Schaal, S.

Neural Computation, (25):328-373, 2013, clmc (article)

Abstract
Nonlinear dynamical systems have been used in many disciplines to model complex behaviors, including biological motor control, robotics, perception, economics, traffic prediction, and neuroscience. While often the unexpected emergent behavior of nonlinear systems is the focus of investigations, it is of equal importance to create goal-directed behavior (e.g., stable locomotion from a system of coupled oscillators under perceptual guidance). Modeling goal-directed behavior with nonlinear systems is, however, rather difficult due to the parameter sensitivity of these systems, their complex phase transitions in response to subtle parameter changes, and the difficulty of analyzing and predicting their long-term behavior; intuition and time-consuming parameter tuning play a major role. This letter presents and reviews dynamical movement primitives, a line of research for modeling attractor behaviors of autonomous nonlinear dynamical systems with the help of statistical learning techniques. The essence of our approach is to start with a simple dynamical system, such as a set of linear differential equations, and transform those into a weakly nonlinear system with prescribed attractor dynamics by meansof a learnable autonomous forcing term. Both point attractors and limit cycle attractors of almost arbitrary complexity can be generated. We explain the design principle of our approach and evaluate its properties in several example applications in motor control and robotics.

am

link (url) [BibTex]

link (url) [BibTex]


Thumb xl screen shot 2018 05 04 at 11.30.27
Self-tuning in Sliding Mode Control of High-Precision Motion Systems

Heertjes, M. F., Vardar, Y.

In IFAC Proceedings Volumes, 46(5):13 - 19, 2013, 6th IFAC Symposium on Mechatronic Systems (inproceedings)

Abstract
In high-precision motion systems, set-point tracking often comes with the problem of overshoot, hence poor settling behavior. To avoid overshoot, PD control (thus without using an integrator) is preferred over PID control. However, PD control gives rise to steady-state error in view of the constant disturbances acting on the system. To deal with both overshoot and steady-state error, a sliding mode controller with saturated integrator is studied. For large servo signals the controller is switched to PD mode as to constrain the integrator buffer and therefore the overshoot. For small servo signals the controller switches to PID mode as to avoid steady-state error. The tuning of the switching parameters will be done automatically with the aim to optimize the settling behavior. The sliding mode controller will be tested on a high-precision motion system.

hi

heertjes_ifac2013 link (url) DOI [BibTex]

heertjes_ifac2013 link (url) DOI [BibTex]


no image
Learning Objective Functions for Manipulation

Kalakrishnan, M., Pastor, P., Righetti, L., Schaal, S.

In 2013 IEEE International Conference on Robotics and Automation, IEEE, Karlsruhe, Germany, 2013 (inproceedings)

Abstract
We present an approach to learning objective functions for robotic manipulation based on inverse reinforcement learning. Our path integral inverse reinforcement learning algorithm can deal with high-dimensional continuous state-action spaces, and only requires local optimality of demonstrated trajectories. We use L 1 regularization in order to achieve feature selection, and propose an efficient algorithm to minimize the resulting convex objective function. We demonstrate our approach by applying it to two core problems in robotic manipulation. First, we learn a cost function for redundancy resolution in inverse kinematics. Second, we use our method to learn a cost function over trajectories, which is then used in optimization-based motion planning for grasping and manipulation tasks. Experimental results show that our method outperforms previous algorithms in high-dimensional settings.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Using Torque Redundancy to Optimize Contact Forces in Legged Robots

Righetti, L., Buchli, J., Mistry, M., Kalakrishnan, M., Schaal, S.

In Redundancy in Robot Manipulators and Multi-Robot Systems, 57, pages: 35-51, Lecture Notes in Electrical Engineering, Springer Berlin Heidelberg, 2013 (incollection)

Abstract
The development of legged robots for complex environments requires controllers that guarantee both high tracking performance and compliance with the environment. More specifically the control of contact interaction with the environment is of crucial importance to ensure stable, robust and safe motions. In the following, we present an inverse dynamics controller that exploits torque redundancy to directly and explicitly minimize any combination of linear and quadratic costs in the contact constraints and in the commands. Such a result is particularly relevant for legged robots as it allows to use torque redundancy to directly optimize contact interactions. For example, given a desired locomotion behavior, it can guarantee the minimization of contact forces to reduce slipping on difficult terrains while ensuring high tracking performance of the desired motion. The proposed controller is very simple and computationally efficient, and most importantly it can greatly improve the performance of legged locomotion on difficult terrains as can be seen in the experimental results.

am mg

link (url) [BibTex]

link (url) [BibTex]


no image
Optimal distribution of contact forces with inverse-dynamics control

Righetti, L., Buchli, J., Mistry, M., Kalakrishnan, M., Schaal, S.

The International Journal of Robotics Research, 32(3):280-298, March 2013 (article)

Abstract
The development of legged robots for complex environments requires controllers that guarantee both high tracking performance and compliance with the environment. More specifically the control of the contact interaction with the environment is of crucial importance to ensure stable, robust and safe motions. In this contribution we develop an inverse-dynamics controller for floating-base robots under contact constraints that can minimize any combination of linear and quadratic costs in the contact constraints and the commands. Our main result is the exact analytical derivation of the controller. Such a result is particularly relevant for legged robots as it allows us to use torque redundancy to directly optimize contact interactions. For example, given a desired locomotion behavior, we can guarantee the minimization of contact forces to reduce slipping on difficult terrains while ensuring high tracking performance of the desired motion. The main advantages of the controller are its simplicity, computational efficiency and robustness to model inaccuracies. We present detailed experimental results on simulated humanoid and quadruped robots as well as a real quadruped robot. The experiments demonstrate that the controller can greatly improve the robustness of locomotion of the robots.1

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A Practical System For Recording Instrument Interactions During Live Robotic Surgery

McMahan, W., Gomez, E. D., Chen, L., Bark, K., Nappo, J. C., Koch, E. I., Lee, D. I., Dumon, K., Williams, N., Kuchenbecker, K. J.

In Proc. Medicine Meets Virtual Reality, 2013, Poster presentation given by McMahan (inproceedings)

hi

[BibTex]

[BibTex]


no image
Learning Task Error Models for Manipulation

Pastor, P., Kalakrishnan, M., Binney, J., Kelly, J., Righetti, L., Sukhatme, G. S., Schaal, S.

In 2013 IEEE Conference on Robotics and Automation, IEEE, Karlsruhe, Germany, 2013 (inproceedings)

Abstract
Precise kinematic forward models are important for robots to successfully perform dexterous grasping and manipulation tasks, especially when visual servoing is rendered infeasible due to occlusions. A lot of research has been conducted to estimate geometric and non-geometric parameters of kinematic chains to minimize reconstruction errors. However, kinematic chains can include non-linearities, e.g. due to cable stretch and motor-side encoders, that result in significantly different errors for different parts of the state space. Previous work either does not consider such non-linearities or proposes to estimate non-geometric parameters of carefully engineered models that are robot specific. We propose a data-driven approach that learns task error models that account for such unmodeled non-linearities. We argue that in the context of grasping and manipulation, it is sufficient to achieve high accuracy in the task relevant state space. We identify this relevant state space using previously executed joint configurations and learn error corrections for those. Therefore, our system is developed to generate subsequent executions that are similar to previous ones. The experiments show that our method successfully captures the non-linearities in the head kinematic chain (due to a counterbalancing spring) and the arm kinematic chains (due to cable stretch) of the considered experimental platform, see Fig. 1. The feasibility of the presented error learning approach has also been evaluated in independent DARPA ARM-S testing contributing to successfully complete 67 out of 72 grasping and manipulation tasks.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2010


no image
Reinforcement learning of full-body humanoid motor skills

Stulp, F., Buchli, J., Theodorou, E., Schaal, S.

In Humanoid Robots (Humanoids), 2010 10th IEEE-RAS International Conference on, pages: 405-410, December 2010, clmc (inproceedings)

Abstract
Applying reinforcement learning to humanoid robots is challenging because humanoids have a large number of degrees of freedom and state and action spaces are continuous. Thus, most reinforcement learning algorithms would become computationally infeasible and require a prohibitive amount of trials to explore such high-dimensional spaces. In this paper, we present a probabilistic reinforcement learning approach, which is derived from the framework of stochastic optimal control and path integrals. The algorithm, called Policy Improvement with Path Integrals (PI2), has a surprisingly simple form, has no open tuning parameters besides the exploration noise, is model-free, and performs numerically robustly in high dimensional learning problems. We demonstrate how PI2 is able to learn full-body motor skills on a 34-DOF humanoid robot. To demonstrate the generality of our approach, we also apply PI2 in the context of variable impedance control, where both planned trajectories and gain schedules for each joint are optimized simultaneously.

am

link (url) [BibTex]

2010


link (url) [BibTex]


no image
Lack of Discriminatory Function for Endoscopy Skills on a Computer-based Simulator

Kim, S., Spencer, G., Makar, G., Ahmad, N., Jaffe, D., Ginsberg, G., Kuchenbecker, K. J., Kochman, M.

Surgical Endoscopy, 24(12):3008-3015, December 2010 (article)

hi

[BibTex]

[BibTex]


Thumb xl screen shot 2015 08 23 at 15.52.25
Enhanced Visual Scene Understanding through Human-Robot Dialog

Johnson-Roberson, M., Bohg, J., Kragic, D., Skantze, G., Gustafson, J., Carlson, R.

In Proceedings of AAAI 2010 Fall Symposium: Dialog with Robots, November 2010 (inproceedings)

am

pdf [BibTex]

pdf [BibTex]


Thumb xl screen shot 2015 08 23 at 15.18.17
Scene Representation and Object Grasping Using Active Vision

Gratal, X., Bohg, J., Björkman, M., Kragic, D.

In IROS’10 Workshop on Defining and Solving Realistic Perception Problems in Personal Robotics, October 2010 (inproceedings)

Abstract
Object grasping and manipulation pose major challenges for perception and control and require rich interaction between these two fields. In this paper, we concentrate on the plethora of perceptual problems that have to be solved before a robot can be moved in a controlled way to pick up an object. A vision system is presented that integrates a number of different computational processes, e.g. attention, segmentation, recognition or reconstruction to incrementally build up a representation of the scene suitable for grasping and manipulation of objects. Our vision system is equipped with an active robotic head and a robot arm. This embodiment enables the robot to perform a number of different actions like saccading, fixating, and grasping. By applying these actions, the robot can incrementally build a scene representation and use it for interaction. We demonstrate our system in a scenario for picking up known objects from a table top. We also show the system’s extendibility towards grasping of unknown and familiar objects.

am

video pdf slides [BibTex]

video pdf slides [BibTex]


Thumb xl after250measurementprmgoodlinespec
Strategies for multi-modal scene exploration

Bohg, J., Johnson-Roberson, M., Björkman, M., Kragic, D.

In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages: 4509-4515, October 2010 (inproceedings)

Abstract
We propose a method for multi-modal scene exploration where initial object hypothesis formed by active visual segmentation are confirmed and augmented through haptic exploration with a robotic arm. We update the current belief about the state of the map with the detection results and predict yet unknown parts of the map with a Gaussian Process. We show that through the integration of different sensor modalities, we achieve a more complete scene model. We also show that the prediction of the scene structure leads to a valid scene representation even if the map is not fully traversed. Furthermore, we propose different exploration strategies and evaluate them both in simulation and on our robotic platform.

am

video pdf DOI Project Page [BibTex]

video pdf DOI Project Page [BibTex]


Thumb xl screen shot 2015 08 23 at 01.22.09
Attention-based active 3D point cloud segmentation

Johnson-Roberson, M., Bohg, J., Björkman, M., Kragic, D.

In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages: 1165-1170, October 2010 (inproceedings)

Abstract
In this paper we present a framework for the segmentation of multiple objects from a 3D point cloud. We extend traditional image segmentation techniques into a full 3D representation. The proposed technique relies on a state-of-the-art min-cut framework to perform a fully 3D global multi-class labeling in a principled manner. Thereby, we extend our previous work in which a single object was actively segmented from the background. We also examine several seeding methods to bootstrap the graphical model-based energy minimization and these methods are compared over challenging scenes. All results are generated on real-world data gathered with an active vision robotic head. We present quantitive results over aggregate sets as well as visual results on specific examples.

am

pdf DOI [BibTex]

pdf DOI [BibTex]


no image
Relative Entropy Policy Search

Peters, J., Mülling, K., Altun, Y.

In Proceedings of the Twenty-Fourth National Conference on Artificial Intelligence, pages: 1607-1612, (Editors: Fox, M. , D. Poole), AAAI Press, Menlo Park, CA, USA, Twenty-Fourth National Conference on Artificial Intelligence (AAAI-10), July 2010 (inproceedings)

Abstract
Policy search is a successful approach to reinforcement learning. However, policy improvements often result in the loss of information. Hence, it has been marred by premature convergence and implausible solutions. As first suggested in the context of covariant policy gradients (Bagnell and Schneider 2003), many of these problems may be addressed by constraining the information loss. In this paper, we continue this path of reasoning and suggest the Relative Entropy Policy Search (REPS) method. The resulting method differs significantly from previous policy gradient approaches and yields an exact update step. It works well on typical reinforcement learning benchmark problems.

am ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
VerroTouch: High-Frequency Acceleration Feedback for Telerobotic Surgery

Kuchenbecker, K. J., Gewirtz, J., McMahan, W., Standish, D., Martin, P., Bohren, J., Mendoza, P. J., Lee, D. I.

Hands-on demonstration presented at EuroHaptics, Amsterdam, Netherlands, Amsterdam, Netherlands, July 2010 (misc)

hi

[BibTex]

[BibTex]


no image
TexturePad: Realistic Rendering of Haptic Textures

Romano, J. M., Landin, N., McMahan, W., Kuchenbecker, K. J.

Hands-on demonstration presented at EuroHaptics, Amsterdam, Netherlands, July 2010 (misc)

hi

[BibTex]

[BibTex]


no image
VerroTouch: High-Frequency Acceleration Feedback for Telerobotic Surgery

Kuchenbecker, K. J., Gewirtz, J., McMahan, W., Standish, D., Martin, P., Bohren, J., Mendoza, P. J., Lee, D. I.

In Haptics: Generating and Perceiving Tangible Sensations, Proc. EuroHaptics, Part I, 6191, pages: 189-196, Lecture Notes in Computer Science, Springer, Amsterdam, Netherlands, July 2010, Oral presentation given by Kuchenbecker (inproceedings)

hi

[BibTex]

[BibTex]


no image
Identifying the Role of Proprioception in Upper-Limb Prosthesis Control: Studies on Targeted Motion

Blank, A., Okamura, A. M., Kuchenbecker, K. J.

ACM Transactions on Applied Perception, 7(3):1-23, June 2010 (article)

hi

[BibTex]

[BibTex]


no image
Reinforcement learning of motor skills in high dimensions: A path integral approach

Theodorou, E., Buchli, J., Schaal, S.

In Robotics and Automation (ICRA), 2010 IEEE International Conference on, pages: 2397-2403, May 2010, clmc (inproceedings)

Abstract
Reinforcement learning (RL) is one of the most general approaches to learning control. Its applicability to complex motor systems, however, has been largely impossible so far due to the computational difficulties that reinforcement learning encounters in high dimensional continuous state-action spaces. In this paper, we derive a novel approach to RL for parameterized control policies based on the framework of stochastic optimal control with path integrals. While solidly grounded in optimal control theory and estimation theory, the update equations for learning are surprisingly simple and have no danger of numerical instabilities as neither matrix inversions nor gradient learning rates are required. Empirical evaluations demonstrate significant performance improvements over gradient-based policy learning and scalability to high-dimensional control problems. Finally, a learning experiment on a robot dog illustrates the functionality of our algorithm in a real-world scenario. We believe that our new algorithm, Policy Improvement with Path Integrals (PI2), offers currently one of the most efficient, numerically robust, and easy to implement algorithms for RL in robotics.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Inverse dynamics control of floating base systems using orthogonal decomposition

Mistry, M., Buchli, J., Schaal, S.

In Robotics and Automation (ICRA), 2010 IEEE International Conference on, pages: 3406-3412, May 2010, clmc (inproceedings)

Abstract
Model-based control methods can be used to enable fast, dexterous, and compliant motion of robots without sacrificing control accuracy. However, implementing such techniques on floating base robots, e.g., humanoids and legged systems, is non-trivial due to under-actuation, dynamically changing constraints from the environment, and potentially closed loop kinematics. In this paper, we show how to compute the analytically correct inverse dynamics torques for model-based control of sufficiently constrained floating base rigid-body systems, such as humanoid robots with one or two feet in contact with the environment. While our previous inverse dynamics approach relied on an estimation of contact forces to compute an approximate inverse dynamics solution, here we present an analytically correct solution by using an orthogonal decomposition to project the robot dynamics onto a reduced dimensional space, independent of contact forces. We demonstrate the feasibility and robustness of our approach on a simulated floating base bipedal humanoid robot and an actual robot dog locomoting over rough terrain.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Fast, robust quadruped locomotion over challenging terrain

Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., Schaal, S.

In Robotics and Automation (ICRA), 2010 IEEE International Conference on, pages: 2665-2670, May 2010, clmc (inproceedings)

Abstract
We present a control architecture for fast quadruped locomotion over rough terrain. We approach the problem by decomposing it into many sub-systems, in which we apply state-of-the-art learning, planning, optimization and control techniques to achieve robust, fast locomotion. Unique features of our control strategy include: (1) a system that learns optimal foothold choices from expert demonstration using terrain templates, (2) a body trajectory optimizer based on the Zero-Moment Point (ZMP) stability criterion, and (3) a floating-base inverse dynamics controller that, in conjunction with force control, allows for robust, compliant locomotion over unperceived obstacles. We evaluate the performance of our controller by testing it on the LittleDog quadruped robot, over a wide variety of rough terrain of varying difficulty levels. We demonstrate the generalization ability of this controller by presenting test results from an independent external test team on terrains that have never been shown to us.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Automatic Filter Design for Synthesis of Haptic Textures from Recorded Acceleration Data

Romano, J. M., Yoshioka, T., Kuchenbecker, K. J.

In Proc. IEEE International Conference on Robotics and Automation, pages: 1815-1821, Anchorage, Alaska, USA, May 2010, Oral presentation given by Romano (inproceedings)

hi

[BibTex]

[BibTex]