Header logo is


2019


no image
Assessing Aesthetics of Generated Abstract Images Using Correlation Structure

Khajehabdollahi, S., Martius, G., Levina, A.

In Proceedings 2019 IEEE Symposium Series on Computational Intelligence (SSCI), pages: 306-313, IEEE, 2019 IEEE Symposium Series on Computational Intelligence (SSCI), December 2019 (inproceedings)

al

DOI [BibTex]

2019


DOI [BibTex]


no image
Deep Neural Network Approach in Electrical Impedance Tomography-Based Real-Time Soft Tactile Sensor

Park, H., Lee, H., Park, K., Mo, S., Kim, J.

In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 7447-7452, Macau, China, November 2019 (inproceedings)

Abstract
Recently, a whole-body tactile sensing have emerged in robotics for safe human-robot interaction. A key issue in the whole-body tactile sensing is ensuring large-area manufacturability and high durability. To fulfill these requirements, a reconstruction method called electrical impedance tomography (EIT) was adopted in large-area tactile sensing. This method maps voltage measurements to conductivity distribution using only a few number of measurement electrodes. A common approach for the mapping is using a linearized model derived from the Maxwell's equation. This linearized model shows fast computation time and moderate robustness against measurement noise but reconstruction accuracy is limited. In this paper, we propose a novel nonlinear EIT algorithm through Deep Neural Network (DNN) approach to improve the reconstruction accuracy of EIT-based tactile sensors. The neural network architecture with rectified linear unit (ReLU) function ensured extremely low computational time (0.002 seconds) and nonlinear network structure which provides superior measurement accuracy. The DNN model was trained with dataset synthesized in simulation environment. To achieve the robustness against measurement noise, the training proceeded with additive Gaussian noise that estimated through actual measurement noise. For real sensor application, the trained DNN model was transferred to a conductive fabric-based soft tactile sensor. For validation, the reconstruction error and noise robustness were mainly compared using conventional linearized model and proposed approach in simulation environment. As a demonstration, the tactile sensor equipped with the trained DNN model is presented for a contact force estimation.

hi

DOI [BibTex]

DOI [BibTex]


How do people learn how to plan?
How do people learn how to plan?

Jain, Y. R., Gupta, S., Rakesh, V., Dayan, P., Callaway, F., Lieder, F.

Conference on Cognitive Computational Neuroscience, September 2019 (conference)

Abstract
How does the brain learn how to plan? We reverse-engineer people's underlying learning mechanisms by combining rational process models of cognitive plasticity with recently developed empirical methods that allow us to trace the temporal evolution of people's planning strategies. We find that our Learned Value of Computation model (LVOC) accurately captures people's average learning curve. However, there were also substantial individual differences in metacognitive learning that are best understood in terms of multiple different learning mechanisms-including strategy selection learning. Furthermore, we observed that LVOC could not fully capture people's ability to adaptively decide when to stop planning. We successfully extended the LVOC model to address these discrepancies. Our models broadly capture people's ability to improve their decision mechanisms and represent a significant step towards reverse-engineering how the brain learns increasingly effective cognitive strategies through its interaction with the environment.

re

How do people learn to plan? How do people learn to plan? [BibTex]

How do people learn to plan? How do people learn to plan? [BibTex]


no image
Testing Computational Models of Goal Pursuit

Mohnert, F., Tosic, M., Lieder, F.

CCN2019, September 2019 (conference)

Abstract
Goals are essential to human cognition and behavior. But how do we pursue them? To address this question, we model how capacity limits on planning and attention shape the computational mechanisms of human goal pursuit. We test the predictions of a simple model based on previous theories in a behavioral experiment. The results show that to fully capture how people pursue their goals it is critical to account for people’s limited attention in addition to their limited planning. Our findings elucidate the cognitive constraints that shape human goal pursuit and point to an improved model of human goal pursuit that can reliably predict which goals a person will achieve and which goals they will struggle to pursue effectively.

re

link (url) DOI Project Page [BibTex]


no image
Extending Rationality

Pothos, E. M., Busemeyer, J. R., Pleskac, T., Yearsley, J. M., Tenenbaum, J. B., Goodman, N. D., Tessler, M. H., Griffiths, T. L., Lieder, F., Hertwig, R., Pachur, T., Leuker, C., Shiffrin, R. M.

Proceedings of the 41st Annual Conference of the Cognitive Science Society, pages: 39-40, CogSci 2019, July 2019 (conference)

re

Proceedings of the 41st Annual Conference of the Cognitive Science Society [BibTex]

Proceedings of the 41st Annual Conference of the Cognitive Science Society [BibTex]


How should we incentivize learning? An optimal feedback mechanism for educational games and online courses
How should we incentivize learning? An optimal feedback mechanism for educational games and online courses

Xu, L., Wirzberger, M., Lieder, F.

41st Annual Meeting of the Cognitive Science Society, July 2019 (conference)

Abstract
Online courses offer much-needed opportunities for lifelong self-directed learning, but people rarely follow through on their noble intentions to complete them. To increase student retention educational software often uses game elements to motivate students to engage in and persist in learning activities. However, gamification only works when it is done properly, and there is currently no principled method that educational software could use to achieve this. We develop a principled feedback mechanism for encouraging good study choices and persistence in self-directed learning environments. Rather than giving performance feedback, our method rewards the learner's efforts with optimal brain points that convey the value of practice. To derive these optimal brain points, we applied the theory of optimal gamification to a mathematical model of skill acquisition. In contrast to hand-designed incentive structures, optimal brain points are constructed in such a way that the incentive system cannot be gamed. Evaluating our method in a behavioral experiment, we find that optimal brain points significantly increased the proportion of participants who instead of exploiting an inefficient skill they already knew-attempted to learn a difficult but more efficient skill, persisted through failure, and succeeded to master the new skill. Our method provides a principled approach to designing incentive structures and feedback mechanisms for educational games and online courses. We are optimistic that optimal brain points will prove useful for increasing student retention and helping people overcome the motivational obstacles that stand in the way of self-directed lifelong learning.

re

link (url) Project Page [BibTex]


no image
Measuring How People Learn How to Plan

Jain, Y. R., Callaway, F., Lieder, F.

RLDM 2019, July 2019 (conference)

re

[BibTex]

[BibTex]


no image
What’s in the Adaptive Toolbox and How Do People Choose From It? Rational Models of Strategy Selection in Risky Choice

Mohnert, F., Pachur, T., Lieder, F.

41st Annual Meeting of the Cognitive Science Society, July 2019 (conference)

Abstract
Although process data indicates that people often rely on various (often heuristic) strategies to choose between risky options, our models of heuristics cannot predict people's choices very accurately. To address this challenge, it has been proposed that people adaptively choose from a toolbox of simple strategies. But which strategies are contained in this toolbox? And how do people decide when to use which decision strategy? Here, we develop a model according to which each person selects decisions strategies rationally from their personal toolbox; our model allows one to infer which strategies are contained in the cognitive toolbox of an individual decision-maker and specifies when she will use which strategy. Using cross-validation on an empirical data set, we find that this rational model of strategy selection from a personal adaptive toolbox predicts people's choices better than any single strategy (even when it is allowed to vary across participants) and better than previously proposed toolbox models. Our model comparisons show that both inferring the toolbox and rational strategy selection are critical for accurately predicting people's risky choices. Furthermore, our model-based data analysis reveals considerable individual differences in the set of strategies people are equipped with and how they choose among them; these individual differences could partly explain why some people make better choices than others. These findings represent an important step towards a complete formalization of the notion that people select their cognitive strategies from a personal adaptive toolbox.

re

link (url) [BibTex]


Objective and Subjective Assessment of Algorithms for Reducing Three-Axis Vibrations to One-Axis Vibrations
Objective and Subjective Assessment of Algorithms for Reducing Three-Axis Vibrations to One-Axis Vibrations

Park, G., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference, pages: 467-472, July 2019 (inproceedings)

Abstract
A typical approach to creating realistic vibrotactile feedback is reducing 3D vibrations recorded by an accelerometer to 1D signals that can be played back on a haptic actuator, but some of the information is often lost in this dimensional reduction process. This paper describes seven representative algorithms and proposes four metrics based on the spectral match, the temporal match, and the average value and the variability of them across 3D rotations. These four performance metrics were applied to four texture recordings, and the method utilizing the discrete fourier transform (DFT) was found to be the best regardless of the sensing axis. We also recruited 16 participants to assess the perceptual similarity achieved by each algorithm in real time. We found the four metrics correlated well with the subjectively rated similarities for the six dimensional reduction algorithms, with the exception of taking the 3D vector magnitude, which was perceived to be good despite its low spectral and temporal match metrics.

hi

DOI [BibTex]

DOI [BibTex]


no image
Measuring How People Learn How to Plan

Jain, Y. R., Callaway, F., Lieder, F.

41st Annual Meeting of the Cognitive Science Society, July 2019 (conference)

Abstract
The human mind has an unparalleled ability to acquire complex cognitive skills, discover new strategies, and refine its ways of thinking and decision-making; these phenomena are collectively known as cognitive plasticity. One important manifestation of cognitive plasticity is learning to make better–more far-sighted–decisions via planning. A serious obstacle to studying how people learn how to plan is that cognitive plasticity is even more difficult to observe than cognitive strategies are. To address this problem, we develop a computational microscope for measuring cognitive plasticity and validate it on simulated and empirical data. Our approach employs a process tracing paradigm recording signatures of human planning and how they change over time. We then invert a generative model of the recorded changes to infer the underlying cognitive plasticity. Our computational microscope measures cognitive plasticity significantly more accurately than simpler approaches, and it correctly detected the effect of an external manipulation known to promote cognitive plasticity. We illustrate how computational microscopes can be used to gain new insights into the time course of metacognitive learning and to test theories of cognitive development and hypotheses about the nature of cognitive plasticity. Future work will leverage our computational microscope to reverse-engineer the learning mechanisms enabling people to acquire complex cognitive skills such as planning and problem solving.

re

[BibTex]

[BibTex]


Fingertip Interaction Metrics Correlate with Visual and Haptic Perception of Real Surfaces
Fingertip Interaction Metrics Correlate with Visual and Haptic Perception of Real Surfaces

Vardar, Y., Wallraven, C., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference (WHC), pages: 395-400, Tokyo, Japan, July 2019 (inproceedings)

Abstract
Both vision and touch contribute to the perception of real surfaces. Although there have been many studies on the individual contributions of each sense, it is still unclear how each modality’s information is processed and integrated. To fill this gap, we investigated the similarity of visual and haptic perceptual spaces, as well as how well they each correlate with fingertip interaction metrics. Twenty participants interacted with ten different surfaces from the Penn Haptic Texture Toolkit by either looking at or touching them and judged their similarity in pairs. By analyzing the resulting similarity ratings using multi-dimensional scaling (MDS), we found that surfaces are similarly organized within the three-dimensional perceptual spaces of both modalities. Also, between-participant correlations were significantly higher in the haptic condition. In a separate experiment, we obtained the contact forces and accelerations acting on one finger interacting with each surface in a controlled way. We analyzed the collected fingertip interaction data in both the time and frequency domains. Our results suggest that the three perceptual dimensions for each modality can be represented by roughness/smoothness, hardness/softness, and friction, and that these dimensions can be estimated by surface vibration power, tap spectral centroid, and kinetic friction coefficient, respectively.

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
A Cognitive Tutor for Helping People Overcome Present Bias

Lieder, F., Callaway, F., Jain, Y. R., Krueger, P. M., Das, P., Gul, S., Griffiths, T. L.

RLDM 2019, July 2019, Falk Lieder and Frederick Callaway contributed equally to this publication. (conference)

Abstract
People's reliance on suboptimal heuristics gives rise to a plethora of cognitive biases in decision-making including the present bias, which denotes people's tendency to be overly swayed by an action's immediate costs/benefits rather than its more important long-term consequences. One approach to helping people overcome such biases is to teach them better decision strategies. But which strategies should we teach them? And how can we teach them effectively? Here, we leverage an automatic method for discovering rational heuristics and insights into how people acquire cognitive skills to develop an intelligent tutor that teaches people how to make better decisions. As a proof of concept, we derive the optimal planning strategy for a simple model of situations where people fall prey to the present bias. Our cognitive tutor teaches people this optimal planning strategy by giving them metacognitive feedback on how they plan in a 3-step sequential decision-making task. Our tutor's feedback is designed to maximally accelerate people's metacognitive reinforcement learning towards the optimal planning strategy. A series of four experiments confirmed that training with the cognitive tutor significantly reduced present bias and improved people's decision-making competency: Experiment 1 demonstrated that the cognitive tutor's feedback can help participants discover far-sighted planning strategies. Experiment 2 found that this training effect transfers to more complex environments. Experiment 3 found that these transfer effects are retained for at least 24 hours after the training. Finally, Experiment 4 found that practicing with the cognitive tutor can have additional benefits over being told the strategy in words. The results suggest that promoting metacognitive reinforcement learning with optimal feedback is a promising approach to improving the human mind.

re

DOI [BibTex]

DOI [BibTex]


no image
Introducing the Decision Advisor: A simple online tool that helps people overcome cognitive biases and experience less regret in real-life decisions

Iwama, G., Greenberg, S., Moore, D., Lieder, F.

40th Annual Meeting of the Society for Judgement and Decision Making, June 2019 (conference)

re

[BibTex]

[BibTex]


no image
The Goal Characteristics (GC) questionannaire: A comprehensive measure for goals’ content, attainability, interestingness, and usefulness

Iwama, G., Wirzberger, M., Lieder, F.

40th Annual Meeting of the Society for Judgement and Decision Making, June 2019 (conference)

Abstract
Many studies have investigated how goal characteristics affect goal achievement. However, most of them considered only a small number of characteristics and the psychometric properties of their measures remains unclear. To overcome these limitations, we developed and validated a comprehensive questionnaire of goal characteristics with four subscales - measuring the goal’s content, attainability, interestingness, and usefulness respectively. 590 participants completed the questionnaire online. A confirmatory factor analysis supported the four subscales and their structure. The GC questionnaire (https://osf.io/qfhup) can be easily applied to investigate goal setting, pursuit and adjustment in a wide range of contexts.

re

DOI [BibTex]


no image
Variational Autoencoders Recover PCA Directions (by Accident)

Rolinek, M., Zietlow, D., Martius, G.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

Abstract
The Variational Autoencoder (VAE) is a powerful architecture capable of representation learning and generative modeling. When it comes to learning interpretable (disentangled) representations, VAE and its variants show unparalleled performance. However, the reasons for this are unclear, since a very particular alignment of the latent embedding is needed but the design of the VAE does not encourage it in any explicit way. We address this matter and offer the following explanation: the diagonal approximation in the encoder together with the inherent stochasticity force local orthogonality of the decoder. The local behavior of promoting both reconstruction and orthogonality matches closely how the PCA embedding is chosen. Alongside providing an intuitive understanding, we justify the statement with full theoretical analysis as well as with experiments.

al

arXiv link (url) Project Page [BibTex]

arXiv link (url) Project Page [BibTex]


A Magnetically-Actuated Untethered Jellyfish-Inspired Soft Milliswimmer
A Magnetically-Actuated Untethered Jellyfish-Inspired Soft Milliswimmer

(Best Paper Award)

Ziyu Ren, T. W., Hu, W.

RSS 2019: Robotics: Science and Systems Conference, June 2019 (conference)

pi

[BibTex]

[BibTex]


Haptipedia: Accelerating Haptic Device Discovery to Support Interaction & Engineering Design
Haptipedia: Accelerating Haptic Device Discovery to Support Interaction & Engineering Design

Seifi, H., Fazlollahi, F., Oppermann, M., Sastrillo, J. A., Ip, J., Agrawal, A., Park, G., Kuchenbecker, K. J., MacLean, K. E.

In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI), Glasgow, Scotland, May 2019 (inproceedings)

Abstract
Creating haptic experiences often entails inventing, modifying, or selecting specialized hardware. However, experience designers are rarely engineers, and 30 years of haptic inventions are buried in a fragmented literature that describes devices mechanically rather than by potential purpose. We conceived of Haptipedia to unlock this trove of examples: Haptipedia presents a device corpus for exploration through metadata that matter to both device and experience designers. It is a taxonomy of device attributes that go beyond physical description to capture potential utility, applied to a growing database of 105 grounded force-feedback devices, and accessed through a public visualization that links utility to morphology. Haptipedia's design was driven by both systematic review of the haptic device literature and rich input from diverse haptic designers. We describe Haptipedia's reception (including hopes it will redefine device reporting standards) and our plans for its sustainability through community participation.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Internal Array Electrodes Improve the Spatial Resolution of Soft Tactile Sensors Based on Electrical Resistance Tomography

Lee, H., Park, K., Kim, J., Kuchenbecker, K. J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 5411-5417, Montreal, Canada, May 2019, Hyosang Lee and Kyungseo Park contributed equally to this publication (inproceedings)

hi

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
A Clustering Approach to Categorizing 7 Degree-of-Freedom Arm Motions during Activities of Daily Living

Gloumakov, Y., Spiers, A. J., Dollar, A. M.

In Proceedings of the International Conference on Robotics and Automation (ICRA), pages: 7214-7220, Montreal, Canada, May 2019 (inproceedings)

Abstract
In this paper we present a novel method of categorizing naturalistic human arm motions during activities of daily living using clustering techniques. While many current approaches attempt to define all arm motions using heuristic interpretation, or a combination of several abstract motion primitives, our unsupervised approach generates a hierarchical description of natural human motion with well recognized groups. Reliable recommendation of a subset of motions for task achievement is beneficial to various fields, such as robotic and semi-autonomous prosthetic device applications. The proposed method makes use of well-known techniques such as dynamic time warping (DTW) to obtain a divergence measure between motion segments, DTW barycenter averaging (DBA) to get a motion average, and Ward's distance criterion to build the hierarchical tree. The clusters that emerge summarize the variety of recorded motions into the following general tasks: reach-to-front, transfer-box, drinking from vessel, on-table motion, turning a key or door knob, and reach-to-back pocket. The clustering methodology is justified by comparing against an alternative measure of divergence using Bezier coefficients and K-medoids clustering.

hi

DOI [BibTex]

DOI [BibTex]


Improving Haptic Adjective Recognition with Unsupervised Feature Learning
Improving Haptic Adjective Recognition with Unsupervised Feature Learning

Richardson, B. A., Kuchenbecker, K. J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 3804-3810, Montreal, Canada, May 2019 (inproceedings)

Abstract
Humans can form an impression of how a new object feels simply by touching its surfaces with the densely innervated skin of the fingertips. Many haptics researchers have recently been working to endow robots with similar levels of haptic intelligence, but these efforts almost always employ hand-crafted features, which are brittle, and concrete tasks, such as object recognition. We applied unsupervised feature learning methods, specifically K-SVD and Spatio-Temporal Hierarchical Matching Pursuit (ST-HMP), to rich multi-modal haptic data from a diverse dataset. We then tested the learned features on 19 more abstract binary classification tasks that center on haptic adjectives such as smooth and squishy. The learned features proved superior to traditional hand-crafted features by a large margin, almost doubling the average F1 score across all adjectives. Additionally, particular exploratory procedures (EPs) and sensor channels were found to support perception of certain haptic adjectives, underlining the need for diverse interactions and multi-modal haptic data.

hi

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Elastic modulus affects adhesive strength of gecko-inspired synthetics in variable temperature and humidity

Mitchell, CT, Drotlef, D, Dayan, CB, Sitti, M, Stark, AY

In INTEGRATIVE AND COMPARATIVE BIOLOGY, pages: E372-E372, OXFORD UNIV PRESS INC JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA, March 2019 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Control What You Can: Intrinsically Motivated Task-Planning Agent

Blaes, S., Vlastelica, M., Zhu, J., Martius, G.

In Advances in Neural Information Processing (NeurIPS’19), pages: 12520-12531, Curran Associates, Inc., NeurIPS'19, 2019 (inproceedings)

Abstract
We present a novel intrinsically motivated agent that learns how to control the environment in the fastest possible manner by optimizing learning progress. It learns what can be controlled, how to allocate time and attention, and the relations between objects using surprise based motivation. The effectiveness of our method is demonstrated in a synthetic as well as a robotic manipulation environment yielding considerably improved performance and smaller sample complexity. In a nutshell, our work combines several task-level planning agent structures (backtracking search on task graph, probabilistic road-maps, allocation of search efforts) with intrinsic motivation to achieve learning from scratch.

al

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Wide Range-Sensitive, Bending-Insensitive Pressure Detection and Application to Wearable Healthcare Device
Wide Range-Sensitive, Bending-Insensitive Pressure Detection and Application to Wearable Healthcare Device

Kim, S., Amjadi, M., Lee, T., Jeong, Y., Kwon, D., Kim, M. S., Kim, K., Kim, T., Oh, Y. S., Park, I.

In 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), 2019 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Prototyping Micro- and Nano-Optics with Focused Ion Beam Lithography

Keskinbora, K.

SL48, pages: 46, SPIE.Spotlight, SPIE Press, Bellingham, WA, 2019 (book)

mms

DOI [BibTex]

DOI [BibTex]


no image
Falsification of hybrid systems using symbolic reachability and trajectory splicing

Bogomolov, S., Frehse, G., Gurung, A., Li, D., Martius, G., Ray, R.

In International Conference on Hybrid Systems: Computation and Control, pages: 1-10, HSCC’19, ACM, 2019 (inproceedings)

al

DOI [BibTex]

DOI [BibTex]


no image
Remediating cognitive decline with cognitive tutors

Das, P., Callaway, F., Griffiths, T., Lieder, F.

RLDM 2019, 2019 (conference)

re

[BibTex]

[BibTex]


no image
Gecko-inspired composite microfibers for reversible adhesion on smooth and rough surfaces

Drotlef, D., Dayan, C., Sitti, M.

In INTEGRATIVE AND COMPARATIVE BIOLOGY, pages: E58-E58, OXFORD UNIV PRESS INC JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA, 2019 (inproceedings)

pi

[BibTex]

[BibTex]

2012


no image
Automated Tip-Based 2-D Mechanical Assembly of Micro/Nanoparticles

Onal, C. D., Ozcan, O., Sitti, M.

In Feedback Control of MEMS to Atoms, pages: 69-108, Springer US, 2012 (incollection)

pi

[BibTex]

2012


[BibTex]


no image
Topological optimization for continuum compliant mechanisms via morphological evolution of traditional mechanisms

Lum, GZ, Yeo, SH, Yang, GL, Teo, TJ, Sitti, M

In 4th International Conference on Computational Methods, pages: 8, 2012 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Spin wave mediated magnetic vortex core reversal

Stoll, H.

In 8461, San Diego, California, USA, 2012 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
The principles of XMCD and its application to L-edges in transition metals

Schütz, G.

In Linear and Chiral Dichroism in the Electron Miroscope, pages: 23-42, Pan Stanford Publishing Pte.Ltd., Singapore, 2012 (incollection)

mms

[BibTex]

[BibTex]


no image
Flapping Wings with DC-Motors via Direct, Elastic Transmissions

Azhar, M., Campolo, D., Lau, G., Sitti, M.

In Proceedings of International Conference on Intelligent Unmanned Systems, 8, 2012 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Investigation of bioinspired gecko fibers to improve adhesion of HeartLander surgical robot

Tortora, G., Glass, P., Wood, N., Aksak, B., Menciassi, A., Sitti, M., Riviere, C.

In Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, pages: 908-911, 2012 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Magnetic hysteresis for multi-state addressable magnetic microrobotic control

Diller, E., Miyashita, S., Sitti, M.

In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pages: 2325-2331, 2012 (inproceedings)

pi

[BibTex]

[BibTex]


no image
The Playful Machine - Theoretical Foundation and Practical Realization of Self-Organizing Robots

Der, R., Martius, G.

Springer, Berlin Heidelberg, 2012 (book)

Abstract
Autonomous robots may become our closest companions in the near future. While the technology for physically building such machines is already available today, a problem lies in the generation of the behavior for such complex machines. Nature proposes a solution: young children and higher animals learn to master their complex brain-body systems by playing. Can this be an option for robots? How can a machine be playful? The book provides answers by developing a general principle---homeokinesis, the dynamical symbiosis between brain, body, and environment---that is shown to drive robots to self-determined, individual development in a playful and obviously embodiment-related way: a dog-like robot starts playing with a barrier, eventually jumping or climbing over it; a snakebot develops coiling and jumping modes; humanoids develop climbing behaviors when fallen into a pit, or engage in wrestling-like scenarios when encountering an opponent. The book also develops guided self-organization, a new method that helps to make the playful machines fit for fulfilling tasks in the real world.

al

link (url) [BibTex]


no image
Structural and chemical characterization on the nanoscale

Stierle, A., Carstanjen, H.-D., Hofmann, S.

In Nanoelectronics and Information Technology. Advanced Electronic Materials and Novel Devices, pages: 233-254, Wiley-VCH, Weinheim, 2012 (incollection)

mms

[BibTex]

[BibTex]


no image
Rutherford Backscattering

Carstanjen, H. D.

In Nanoelectronics and Information Technology. Advanced Electronic Materials and Novel Devices, pages: 250-252, WILEY-VCH Verlag, Weinheim, Germany, 2012 (incollection)

mms

[BibTex]

[BibTex]