Header logo is


2019


EM-Fusion: Dynamic Object-Level SLAM With Probabilistic Data Association
EM-Fusion: Dynamic Object-Level SLAM With Probabilistic Data Association

Strecke, M., Stückler, J.

In International Conference on Computer Vision, October 2019, arXiv:1904.11781 (inproceedings)

ev

preprint Project page Poster [BibTex]

2019


preprint Project page Poster [BibTex]


no image
Learning to Disentangle Latent Physical Factors for Video Prediction

Zhu, D., Munderloh, M., Rosenhahn, B., Stückler, J.

In German Conference on Pattern Recognition (GCPR), 2019, to appear (inproceedings)

ev

dataset & evaluation code video preprint [BibTex]

dataset & evaluation code video preprint [BibTex]


no image
Visual-Inertial Mapping with Non-Linear Factor Recovery

Usenko, V., Demmel, N., Schubert, D., Stückler, J., Cremers, D.

IEEE Robotics and Automation Letters (RA-L), 2019, to appear, arXiv:1904.06504 (article)

Abstract
Cameras and inertial measurement units are complementary sensors for ego-motion estimation and environment mapping. Their combination makes visual-inertial odometry (VIO) systems more accurate and robust. For globally consistent mapping, however, combining visual and inertial information is not straightforward. To estimate the motion and geometry with a set of images large baselines are required. Because of that, most systems operate on keyframes that have large time intervals between each other. Inertial data on the other hand quickly degrades with the duration of the intervals and after several seconds of integration, it typically contains only little useful information. In this paper, we propose to extract relevant information for visual-inertial mapping from visual-inertial odometry using non-linear factor recovery. We reconstruct a set of non-linear factors that make an optimal approximation of the information on the trajectory accumulated by VIO. To obtain a globally consistent map we combine these factors with loop-closing constraints using bundle adjustment. The VIO factors make the roll and pitch angles of the global map observable, and improve the robustness and the accuracy of the mapping. In experiments on a public benchmark, we demonstrate superior performance of our method over the state-of-the-art approaches.

ev

[BibTex]

[BibTex]


no image
3D Birds-Eye-View Instance Segmentation

Elich, C., Engelmann, F., Kontogianni, T., Leibe, B.

In German Conference on Pattern Recognition (GCPR), 2019, arXiv:1904.02199, to appear (inproceedings)

ev

[BibTex]

[BibTex]

2010


no image
Combining depth and color cues for scale- and viewpoint-invariant object segmentation and recognition using Random Forests

Stueckler, J., Behnke, S.

In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pages: 4566-4571, October 2010 (inproceedings)

ev

link (url) DOI [BibTex]

2010


link (url) DOI [BibTex]


no image
Intuitive Multimodal Interaction for Domestic Service Robots

Nieuwenhuisen, M., Stueckler, J., Behnke, S.

In Proc. of the ISR/ROBOTIK, VDE Verlag, 2010 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Improving People Awareness of Service Robots by Semantic Scene Knowledge

Stueckler, J., Behnke, S.

In RobuCup, 6556, pages: 157-168, Lecture Notes in Computer Science, Springer, 2010 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Towards Semantic Scene Analysis with Time-of-flight Cameras

Holz, D., Schnabel, R., Droeschel, D., Stueckler, J., Behnke, S.

In RobuCup, 6556, pages: 121-132, Lecture Notes in Computer Science, Springer, 2010 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Utilizing the Structure of Field Lines for Efficient Soccer Robot Localization

Schulz, H., Liu, W., Stueckler, J., Behnke, S.

In RobuCup, 6556, pages: 397-408, Lecture Notes in Computer Science, Springer, 2010 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Improving indoor navigation of autonomous robots by an explicit representation of doors

Nieuwenhuisen, M., Stueckler, J., Behnke, S.

In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), pages: 4895-4901, May 2010 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Improving imitated grasping motions through interactive expected deviation learning

Gräve, K., Stueckler, J., Behnke, S.

In Proc. of the 10th IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), pages: 397-404, December 2010 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Motion Skills from Expert Demonstrations and Own Experience using Gaussian Process Regression

Gräve, K., Stueckler, J., Behnke, S.

In Proc. of the ISR/ROBOTIK, pages: 1-8, VDE Verlag, 2010 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Using Time-of-Flight cameras with active gaze control for 3D collision avoidance

Droeschel, D., Holz, D., Stueckler, J., Behnke, S.

In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), pages: 4035-4040, May 2010 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]