Header logo is



Active Uncertainty Calibration in Bayesian ODE Solvers
Active Uncertainty Calibration in Bayesian ODE Solvers

Kersting, H., Hennig, P.

Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence (UAI), pages: 309-318, (Editors: Ihler, A. and Janzing, D.), AUAI Press, June 2016 (conference)

Abstract
There is resurging interest, in statistics and machine learning, in solvers for ordinary differential equations (ODEs) that return probability measures instead of point estimates. Recently, Conrad et al.~introduced a sampling-based class of methods that are `well-calibrated' in a specific sense. But the computational cost of these methods is significantly above that of classic methods. On the other hand, Schober et al.~pointed out a precise connection between classic Runge-Kutta ODE solvers and Gaussian filters, which gives only a rough probabilistic calibration, but at negligible cost overhead. By formulating the solution of ODEs as approximate inference in linear Gaussian SDEs, we investigate a range of probabilistic ODE solvers, that bridge the trade-off between computational cost and probabilistic calibration, and identify the inaccurate gradient measurement as the crucial source of uncertainty. We propose the novel filtering-based method Bayesian Quadrature filtering (BQF) which uses Bayesian quadrature to actively learn the imprecision in the gradient measurement by collecting multiple gradient evaluations.

ei pn

link (url) Project Page Project Page [BibTex]

link (url) Project Page Project Page [BibTex]


Automatic {LQR} Tuning Based on {G}aussian Process Global Optimization
Automatic LQR Tuning Based on Gaussian Process Global Optimization

Marco, A., Hennig, P., Bohg, J., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 270-277, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
This paper proposes an automatic controller tuning framework based on linear optimal control combined with Bayesian optimization. With this framework, an initial set of controller gains is automatically improved according to a pre-defined performance objective evaluated from experimental data. The underlying Bayesian optimization algorithm is Entropy Search, which represents the latent objective as a Gaussian process and constructs an explicit belief over the location of the objective minimum. This is used to maximize the information gain from each experimental evaluation. Thus, this framework shall yield improved controllers with fewer evaluations compared to alternative approaches. A seven-degree- of-freedom robot arm balancing an inverted pole is used as the experimental demonstrator. Results of a two- and four- dimensional tuning problems highlight the method’s potential for automatic controller tuning on robotic platforms.

am ics pn

Video PDF DOI Project Page [BibTex]

Video PDF DOI Project Page [BibTex]


no image
Batch Bayesian Optimization via Local Penalization

González, J., Dai, Z., Hennig, P., Lawrence, N.

Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS), 51, pages: 648-657, JMLR Workshop and Conference Proceedings, (Editors: Gretton, A. and Robert, C. C.), May 2016 (conference)

ei pn

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Probabilistic Approximate Least-Squares
Probabilistic Approximate Least-Squares

Bartels, S., Hennig, P.

Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS), 51, pages: 676-684, JMLR Workshop and Conference Proceedings, (Editors: Gretton, A. and Robert, C. C. ), May 2016 (conference)

Abstract
Least-squares and kernel-ridge / Gaussian process regression are among the foundational algorithms of statistics and machine learning. Famously, the worst-case cost of exact nonparametric regression grows cubically with the data-set size; but a growing number of approximations have been developed that estimate good solutions at lower cost. These algorithms typically return point estimators, without measures of uncertainty. Leveraging recent results casting elementary linear algebra operations as probabilistic inference, we propose a new approximate method for nonparametric least-squares that affords a probabilistic uncertainty estimate over the error between the approximate and exact least-squares solution (this is not the same as the posterior variance of the associated Gaussian process regressor). This allows estimating the error of the least-squares solution on a subset of the data relative to the full-data solution. The uncertainty can be used to control the computational effort invested in the approximation. Our algorithm has linear cost in the data-set size, and a simple formal form, so that it can be implemented with a few lines of code in programming languages with linear algebra functionality.

ei pn

link (url) Project Page Project Page [BibTex]

link (url) Project Page Project Page [BibTex]


no image
Robust calibration marker detection in powder bed images from laser beam melting processes

zur Jacobsmühlen, J., Achterhold, J., Kleszczynski, S., Witt, G., Merhof, D.

In 2016 IEEE International Conference on Industrial Technology (ICIT), pages: 910-915, March 2016 (inproceedings)

ev

DOI [BibTex]

DOI [BibTex]


no image
Direct Visual-Inertial Odometry with Stereo Cameras

Usenko, V., Engel, J., Stueckler, J., Cremers, D.

In IEEE International Conference on Robotics and Automation (ICRA), 2016 (inproceedings)

ev

[BibTex]

[BibTex]


no image
CPA-SLAM: Consistent Plane-Model Alignment for Direct RGB-D SLAM

Ma, L., Kerl, C., Stueckler, J., Cremers, D.

In IEEE International Conference on Robotics and Automation (ICRA), 2016 (inproceedings)

ev

[BibTex]

[BibTex]


no image
Unsupervised Learning of Shape-Motion Patterns for Objects in Urban Street Scenes

Klostermann, D., Osep, A., Stueckler, J., Leibe, B.

In British Machine Vision Conference (BMVC), 2016 (inproceedings)

ev

[BibTex]

[BibTex]


no image
Scene Flow Propagation for Semantic Mapping and Object Discovery in Dynamic Street Scenes

Kochanov, D., Osep, A., Stueckler, J., Leibe, B.

In IEEE/RSJ Int. Conference on Intelligent Robots and Systems, IROS, 2016 (inproceedings)

ev

[BibTex]

[BibTex]


no image
Joint Object Pose Estimation and Shape Reconstruction in Urban Street Scenes Using 3D Shape Priors

Engelmann, F., Stueckler, J., Leibe, B.

In Proc. of the German Conference on Pattern Recognition (GCPR), 2016 (inproceedings)

ev

[BibTex]

[BibTex]

2015


Automatic LQR Tuning Based on Gaussian Process Optimization: Early Experimental Results
Automatic LQR Tuning Based on Gaussian Process Optimization: Early Experimental Results

Marco, A., Hennig, P., Bohg, J., Schaal, S., Trimpe, S.

Machine Learning in Planning and Control of Robot Motion Workshop at the IEEE/RSJ International Conference on Intelligent Robots and Systems (iROS), pages: , , Machine Learning in Planning and Control of Robot Motion Workshop, October 2015 (conference)

Abstract
This paper proposes an automatic controller tuning framework based on linear optimal control combined with Bayesian optimization. With this framework, an initial set of controller gains is automatically improved according to a pre-defined performance objective evaluated from experimental data. The underlying Bayesian optimization algorithm is Entropy Search, which represents the latent objective as a Gaussian process and constructs an explicit belief over the location of the objective minimum. This is used to maximize the information gain from each experimental evaluation. Thus, this framework shall yield improved controllers with fewer evaluations compared to alternative approaches. A seven-degree-of-freedom robot arm balancing an inverted pole is used as the experimental demonstrator. Preliminary results of a low-dimensional tuning problem highlight the method’s potential for automatic controller tuning on robotic platforms.

am ei ics pn

PDF DOI Project Page [BibTex]

2015


PDF DOI Project Page [BibTex]


no image
Inference of Cause and Effect with Unsupervised Inverse Regression

Sgouritsa, E., Janzing, D., Hennig, P., Schölkopf, B.

In Proceedings of the 18th International Conference on Artificial Intelligence and Statistics, 38, pages: 847-855, JMLR Workshop and Conference Proceedings, (Editors: Lebanon, G. and Vishwanathan, S.V.N.), JMLR.org, AISTATS, 2015 (inproceedings)

ei pn

Web PDF [BibTex]

Web PDF [BibTex]


no image
Real-Time Object Detection, Localization and Verification for Fast Robotic Depalletizing

Holz, D., Topalidou-Kyniazopoulou, A., Stueckler, J., Behnke, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS), 2015 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Dense Continuous-Time Tracking and Mapping with Rolling Shutter RGB-D Cameras

Kerl, C., Stueckler, J., Cremers, D.

In IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015, {[video][supplementary][datasets]} (inproceedings)

ev

[BibTex]

[BibTex]


Probabilistic Line Searches for Stochastic Optimization
Probabilistic Line Searches for Stochastic Optimization

Mahsereci, M., Hennig, P.

In Advances in Neural Information Processing Systems 28, pages: 181-189, (Editors: C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama and R. Garnett), Curran Associates, Inc., 29th Annual Conference on Neural Information Processing Systems (NIPS), 2015 (inproceedings)

Abstract
In deterministic optimization, line searches are a standard tool ensuring stability and efficiency. Where only stochastic gradients are available, no direct equivalent has so far been formulated, because uncertain gradients do not allow for a strict sequence of decisions collapsing the search space. We construct a probabilistic line search by combining the structure of existing deterministic methods with notions from Bayesian optimization. Our method retains a Gaussian process surrogate of the univariate optimization objective, and uses a probabilistic belief over the Wolfe conditions to monitor the descent. The algorithm has very low computational cost, and no user-controlled parameters. Experiments show that it effectively removes the need to define a learning rate for stochastic gradient descent. [You can find the matlab research code under `attachments' below. The zip-file contains a minimal working example. The docstring in probLineSearch.m contains additional information. A more polished implementation in C++ will be published here at a later point. For comments and questions about the code please write to mmahsereci@tue.mpg.de.]

ei pn

Matlab research code link (url) [BibTex]

Matlab research code link (url) [BibTex]


no image
Large-Scale Direct SLAM with Stereo Cameras

Engel, J., Stueckler, J., Cremers, D.

In IEEE International Conference on Intelligent Robots and Systems (IROS), 2015 (inproceedings)

ev

[BibTex]

[BibTex]


no image
A Random Riemannian Metric for Probabilistic Shortest-Path Tractography

Hauberg, S., Schober, M., Liptrot, M., Hennig, P., Feragen, A.

In 18th International Conference on Medical Image Computing and Computer Assisted Intervention, 9349, pages: 597-604, Lecture Notes in Computer Science, MICCAI, 2015 (inproceedings)

ei pn

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Motion Cooperation: Smooth Piece-Wise Rigid Scene Flow from RGB-D Images

Jaimez, M., Souiai, M., Stueckler, J., Gonzalez-Jimenez, J., Cremers, D.

In Proc. of the Int. Conference on 3D Vision (3DV), October 2015, {[video]} (inproceedings)

ev

[BibTex]

[BibTex]


no image
Super-Resolution Keyframe Fusion for 3D Modeling with High-Quality Textures

Maier, R., Stueckler, J., Cremers, D.

In International Conference on 3D Vision (3DV), October 2015, {[slides] [poster]} (inproceedings)

ev

[BibTex]

[BibTex]


no image
Reconstructing Street-Scenes in Real-Time From a Driving Car

Usenko, V., Engel, J., Stueckler, J., Cremers, D.

In Proc. of the Int. Conference on 3D Vision (3DV), October 2015 (inproceedings)

ev

[BibTex]

[BibTex]

2009


no image
Integrating indoor mobility, object manipulation, and intuitive interaction for domestic service tasks

Stueckler, J., Behnke, S.

In Proc. of the IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), pages: 506-513, December 2009 (inproceedings)

ev

link (url) DOI [BibTex]

2009


link (url) DOI [BibTex]


no image
Dynamaid, an Anthropomorphic Robot for Research on Domestic Service Applications

Stueckler, J., Schreiber, M., Behnke, S.

In Proc. of the European Conference on Mobile Robots (ECMR), pages: 87-92, 2009 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]