Header logo is


2019


no image
Assessing Aesthetics of Generated Abstract Images Using Correlation Structure

Khajehabdollahi, S., Martius, G., Levina, A.

In Proceedings 2019 IEEE Symposium Series on Computational Intelligence (SSCI), pages: 306-313, IEEE, 2019 IEEE Symposium Series on Computational Intelligence (SSCI), December 2019 (inproceedings)

al

DOI [BibTex]

2019


DOI [BibTex]


Controlling Heterogeneous Stochastic Growth Processes on Lattices with Limited Resources
Controlling Heterogeneous Stochastic Growth Processes on Lattices with Limited Resources

Haksar, R., Solowjow, F., Trimpe, S., Schwager, M.

In Proceedings of the 58th IEEE International Conference on Decision and Control (CDC) , pages: 1315-1322, 58th IEEE International Conference on Decision and Control (CDC), December 2019 (conference)

ics

PDF [BibTex]

PDF [BibTex]


A Learnable Safety Measure
A Learnable Safety Measure

Heim, S., Rohr, A. V., Trimpe, S., Badri-Spröwitz, A.

Conference on Robot Learning, November 2019 (conference) Accepted

dlg ics

Arxiv [BibTex]

Arxiv [BibTex]


EM-Fusion: Dynamic Object-Level SLAM With Probabilistic Data Association
EM-Fusion: Dynamic Object-Level SLAM With Probabilistic Data Association

Strecke, M., Stückler, J.

Proceedings International Conference on Computer Vision 2019 (ICCV), pages: 5864-5873, IEEE, 2019 IEEE/CVF International Conference on Computer Vision (ICCV), October 2019 (conference)

ev

preprint Project page Poster DOI [BibTex]

preprint Project page Poster DOI [BibTex]


no image
Learning to Disentangle Latent Physical Factors for Video Prediction

Zhu, D., Munderloh, M., Rosenhahn, B., Stückler, J.

In Pattern Recognition - Proceedings German Conference on Pattern Recognition (GCPR), Springer International, German Conference on Pattern Recognition (GCPR), September 2019 (inproceedings)

ev

dataset & evaluation code video preprint DOI [BibTex]

dataset & evaluation code video preprint DOI [BibTex]


no image
3D Birds-Eye-View Instance Segmentation

Elich, C., Engelmann, F., Kontogianni, T., Leibe, B.

In Pattern Recognition - Proceedings 41st DAGM German Conference, DAGM GCPR 2019, pages: 48-61, Lecture Notes in Computer Science (LNCS) 11824, (Editors: Fink G.A., Frintrop S., Jiang X.), Springer, 2019 German Conference on Pattern Recognition (GCPR), September 2019, ISSN: 03029743 (inproceedings)

ev

[BibTex]

[BibTex]


Predictive Triggering for Distributed Control of Resource Constrained Multi-agent Systems
Predictive Triggering for Distributed Control of Resource Constrained Multi-agent Systems

Mastrangelo, J. M., Baumann, D., Trimpe, S.

In Proceedings of the 8th IFAC Workshop on Distributed Estimation and Control in Networked Systems, pages: 79-84, 8th IFAC Workshop on Distributed Estimation and Control in Networked Systems (NecSys), September 2019 (inproceedings)

ics

arXiv PDF DOI [BibTex]

arXiv PDF DOI [BibTex]


Event-triggered Pulse Control with Model Learning (if Necessary)
Event-triggered Pulse Control with Model Learning (if Necessary)

Baumann, D., Solowjow, F., Johansson, K. H., Trimpe, S.

In Proceedings of the American Control Conference, pages: 792-797, American Control Conference (ACC), July 2019 (inproceedings)

ics

arXiv PDF Project Page [BibTex]

arXiv PDF Project Page [BibTex]


Data-driven inference of passivity properties via Gaussian process optimization
Data-driven inference of passivity properties via Gaussian process optimization

Romer, A., Trimpe, S., Allgöwer, F.

In Proceedings of the European Control Conference, European Control Conference (ECC), June 2019 (inproceedings)

ics

PDF [BibTex]

PDF [BibTex]


Trajectory-Based Off-Policy Deep Reinforcement Learning
Trajectory-Based Off-Policy Deep Reinforcement Learning

Doerr, A., Volpp, M., Toussaint, M., Trimpe, S., Daniel, C.

In Proceedings of the International Conference on Machine Learning (ICML), International Conference on Machine Learning (ICML), June 2019 (inproceedings)

Abstract
Policy gradient methods are powerful reinforcement learning algorithms and have been demonstrated to solve many complex tasks. However, these methods are also data-inefficient, afflicted with high variance gradient estimates, and frequently get stuck in local optima. This work addresses these weaknesses by combining recent improvements in the reuse of off-policy data and exploration in parameter space with deterministic behavioral policies. The resulting objective is amenable to standard neural network optimization strategies like stochastic gradient descent or stochastic gradient Hamiltonian Monte Carlo. Incorporation of previous rollouts via importance sampling greatly improves data-efficiency, whilst stochastic optimization schemes facilitate the escape from local optima. We evaluate the proposed approach on a series of continuous control benchmark tasks. The results show that the proposed algorithm is able to successfully and reliably learn solutions using fewer system interactions than standard policy gradient methods.

ics

arXiv PDF [BibTex]

arXiv PDF [BibTex]


no image
Variational Autoencoders Pursue PCA Directions (by Accident)

Rolinek, M., Zietlow, D., Martius, G.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

Abstract
The Variational Autoencoder (VAE) is a powerful architecture capable of representation learning and generative modeling. When it comes to learning interpretable (disentangled) representations, VAE and its variants show unparalleled performance. However, the reasons for this are unclear, since a very particular alignment of the latent embedding is needed but the design of the VAE does not encourage it in any explicit way. We address this matter and offer the following explanation: the diagonal approximation in the encoder together with the inherent stochasticity force local orthogonality of the decoder. The local behavior of promoting both reconstruction and orthogonality matches closely how the PCA embedding is chosen. Alongside providing an intuitive understanding, we justify the statement with full theoretical analysis as well as with experiments.

al

arXiv link (url) Project Page [BibTex]

arXiv link (url) Project Page [BibTex]


A Magnetically-Actuated Untethered Jellyfish-Inspired Soft Milliswimmer
A Magnetically-Actuated Untethered Jellyfish-Inspired Soft Milliswimmer

(Best Paper Award)

Ziyu Ren, T. W., Hu, W.

RSS 2019: Robotics: Science and Systems Conference, June 2019 (conference)

pi

[BibTex]

[BibTex]


no image
Falsification of hybrid systems using symbolic reachability and trajectory splicing

Bogomolov, S., Frehse, G., Gurung, A., Li, D., Martius, G., Ray, R.

In Proceedings International Conference on Hybrid Systems: Computation and Control (HSCC ’19), pages: 1-10, ACM, International Conference on Hybrid Systems: Computation and Control (HSCC '19), April 2019 (inproceedings)

al

DOI [BibTex]

DOI [BibTex]


Feedback Control Goes Wireless: Guaranteed Stability over Low-power Multi-hop Networks
Feedback Control Goes Wireless: Guaranteed Stability over Low-power Multi-hop Networks

(Best Paper Award)

Mager, F., Baumann, D., Jacob, R., Thiele, L., Trimpe, S., Zimmerling, M.

In Proceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Systems, pages: 97-108, 10th ACM/IEEE International Conference on Cyber-Physical Systems, April 2019 (inproceedings)

Abstract
Closing feedback loops fast and over long distances is key to emerging applications; for example, robot motion control and swarm coordination require update intervals below 100 ms. Low-power wireless is preferred for its flexibility, low cost, and small form factor, especially if the devices support multi-hop communication. Thus far, however, closed-loop control over multi-hop low-power wireless has only been demonstrated for update intervals on the order of multiple seconds. This paper presents a wireless embedded system that tames imperfections impairing control performance such as jitter or packet loss, and a control design that exploits the essential properties of this system to provably guarantee closed-loop stability for linear dynamic systems. Using experiments on a testbed with multiple cart-pole systems, we are the first to demonstrate the feasibility and to assess the performance of closed-loop control and coordination over multi-hop low-power wireless for update intervals from 20 ms to 50 ms.

ics

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]


no image
Demo Abstract: Fast Feedback Control and Coordination with Mode Changes for Wireless Cyber-Physical Systems

(Best Demo Award)

Mager, F., Baumann, D., Jacob, R., Thiele, L., Trimpe, S., Zimmerling, M.

Proceedings of the 18th ACM/IEEE Conference on Information Processing in Sensor Networks (IPSN), pages: 340-341, 18th ACM/IEEE Conference on Information Processing in Sensor Networks (IPSN), April 2019 (poster)

ics

arXiv PDF DOI [BibTex]

arXiv PDF DOI [BibTex]


no image
Elastic modulus affects adhesive strength of gecko-inspired synthetics in variable temperature and humidity

Mitchell, CT, Drotlef, D, Dayan, CB, Sitti, M, Stark, AY

In INTEGRATIVE AND COMPARATIVE BIOLOGY, pages: E372-E372, OXFORD UNIV PRESS INC JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA, March 2019 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Control What You Can: Intrinsically Motivated Task-Planning Agent

Blaes, S., Vlastelica, M., Zhu, J., Martius, G.

In Advances in Neural Information Processing (NeurIPS’19), pages: 12520-12531, Curran Associates, Inc., NeurIPS'19, 2019 (inproceedings)

Abstract
We present a novel intrinsically motivated agent that learns how to control the environment in the fastest possible manner by optimizing learning progress. It learns what can be controlled, how to allocate time and attention, and the relations between objects using surprise based motivation. The effectiveness of our method is demonstrated in a synthetic as well as a robotic manipulation environment yielding considerably improved performance and smaller sample complexity. In a nutshell, our work combines several task-level planning agent structures (backtracking search on task graph, probabilistic road-maps, allocation of search efforts) with intrinsic motivation to achieve learning from scratch.

al

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Wide Range-Sensitive, Bending-Insensitive Pressure Detection and Application to Wearable Healthcare Device
Wide Range-Sensitive, Bending-Insensitive Pressure Detection and Application to Wearable Healthcare Device

Kim, S., Amjadi, M., Lee, T., Jeong, Y., Kwon, D., Kim, M. S., Kim, K., Kim, T., Oh, Y. S., Park, I.

In 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), 2019 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Gecko-inspired composite microfibers for reversible adhesion on smooth and rough surfaces

Drotlef, D., Dayan, C., Sitti, M.

In INTEGRATIVE AND COMPARATIVE BIOLOGY, pages: E58-E58, OXFORD UNIV PRESS INC JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA, 2019 (inproceedings)

pi

[BibTex]

[BibTex]

2018


Deep Reinforcement Learning for Event-Triggered Control
Deep Reinforcement Learning for Event-Triggered Control

Baumann, D., Zhu, J., Martius, G., Trimpe, S.

In Proceedings of the 57th IEEE International Conference on Decision and Control (CDC), pages: 943-950, 57th IEEE International Conference on Decision and Control (CDC), December 2018 (inproceedings)

al ics

arXiv PDF DOI Project Page Project Page [BibTex]

2018


arXiv PDF DOI Project Page Project Page [BibTex]


Efficient Encoding of Dynamical Systems through Local Approximations
Efficient Encoding of Dynamical Systems through Local Approximations

Solowjow, F., Mehrjou, A., Schölkopf, B., Trimpe, S.

In Proceedings of the 57th IEEE International Conference on Decision and Control (CDC), pages: 6073 - 6079 , Miami, Fl, USA, December 2018 (inproceedings)

ei ics

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]


Depth Control of Underwater Robots using Sliding Modes and Gaussian Process Regression
Depth Control of Underwater Robots using Sliding Modes and Gaussian Process Regression

Lima, G. S., Bessa, W. M., Trimpe, S.

In Proceeding of the 15th Latin American Robotics Symposium, João Pessoa, Brazil, 15th Latin American Robotics Symposium, November 2018 (inproceedings)

Abstract
The development of accurate control systems for underwater robotic vehicles relies on the adequate compensation for hydrodynamic effects. In this work, a new robust control scheme is presented for remotely operated underwater vehicles. In order to meet both robustness and tracking requirements, sliding mode control is combined with Gaussian process regression. The convergence properties of the closed-loop signals are analytically proven. Numerical results confirm the stronger improved performance of the proposed control scheme.

ics

[BibTex]

[BibTex]


Gait learning for soft microrobots controlled by light fields
Gait learning for soft microrobots controlled by light fields

Rohr, A. V., Trimpe, S., Marco, A., Fischer, P., Palagi, S.

In International Conference on Intelligent Robots and Systems (IROS) 2018, pages: 6199-6206, International Conference on Intelligent Robots and Systems 2018, October 2018 (inproceedings)

Abstract
Soft microrobots based on photoresponsive materials and controlled by light fields can generate a variety of different gaits. This inherent flexibility can be exploited to maximize their locomotion performance in a given environment and used to adapt them to changing environments. However, because of the lack of accurate locomotion models, and given the intrinsic variability among microrobots, analytical control design is not possible. Common data-driven approaches, on the other hand, require running prohibitive numbers of experiments and lead to very sample-specific results. Here we propose a probabilistic learning approach for light-controlled soft microrobots based on Bayesian Optimization (BO) and Gaussian Processes (GPs). The proposed approach results in a learning scheme that is highly data-efficient, enabling gait optimization with a limited experimental budget, and robust against differences among microrobot samples. These features are obtained by designing the learning scheme through the comparison of different GP priors and BO settings on a semisynthetic data set. The developed learning scheme is validated in microrobot experiments, resulting in a 115% improvement in a microrobot’s locomotion performance with an experimental budget of only 20 tests. These encouraging results lead the way toward self-adaptive microrobotic systems based on lightcontrolled soft microrobots and probabilistic learning control.

ics pf

arXiv IEEE Xplore DOI Project Page [BibTex]

arXiv IEEE Xplore DOI Project Page [BibTex]


no image
Learning-Based Robust Model Predictive Control with State-Dependent Uncertainty

Soloperto, R., Müller, M. A., Trimpe, S., Allgöwer, F.

In Proceedings of the IFAC Conference on Nonlinear Model Predictive Control (NMPC), Madison, Wisconsin, USA, 6th IFAC Conference on Nonlinear Model Predictive Control, August 2018 (inproceedings)

ics

PDF [BibTex]

PDF [BibTex]


Probabilistic Recurrent State-Space Models
Probabilistic Recurrent State-Space Models

Doerr, A., Daniel, C., Schiegg, M., Nguyen-Tuong, D., Schaal, S., Toussaint, M., Trimpe, S.

In Proceedings of the International Conference on Machine Learning (ICML), International Conference on Machine Learning (ICML), July 2018 (inproceedings)

Abstract
State-space models (SSMs) are a highly expressive model class for learning patterns in time series data and for system identification. Deterministic versions of SSMs (e.g., LSTMs) proved extremely successful in modeling complex time-series data. Fully probabilistic SSMs, however, unfortunately often prove hard to train, even for smaller problems. To overcome this limitation, we propose a scalable initialization and training algorithm based on doubly stochastic variational inference and Gaussian processes. In the variational approximation we propose in contrast to related approaches to fully capture the latent state temporal correlations to allow for robust training.

am ics

arXiv pdf Project Page [BibTex]

arXiv pdf Project Page [BibTex]


Event-triggered Learning for Resource-efficient Networked Control
Event-triggered Learning for Resource-efficient Networked Control

Solowjow, F., Baumann, D., Garcke, J., Trimpe, S.

In Proceedings of the American Control Conference (ACC), pages: 6506 - 6512, American Control Conference, June 2018 (inproceedings)

ics

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]


no image
Poster Abstract: Toward Fast Closed-loop Control over Multi-hop Low-power Wireless Networks

Mager, F., Baumann, D., Trimpe, S., Zimmerling, M.

Proceedings of the 17th ACM/IEEE Conference on Information Processing in Sensor Networks (IPSN), pages: 158-159, Porto, Portugal, April 2018 (poster)

ics

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Evaluating Low-Power Wireless Cyber-Physical Systems
Evaluating Low-Power Wireless Cyber-Physical Systems

Baumann, D., Mager, F., Singh, H., Zimmerling, M., Trimpe, S.

In Proceedings of the IEEE Workshop on Benchmarking Cyber-Physical Networks and Systems (CPSBench), pages: 13-18, IEEE Workshop on Benchmarking Cyber-Physical Networks and Systems (CPSBench), April 2018 (inproceedings)

ics

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]


no image
Enhanced Non-Steady Gliding Performance of the MultiMo-Bat through Optimal Airfoil Configuration and Control Strategy

Kim, H., Woodward, M. A., Sitti, M.

In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 1382-1388, 2018 (inproceedings)

pi

[BibTex]

[BibTex]


no image
L4: Practical loss-based stepsize adaptation for deep learning

Rolinek, M., Martius, G.

In Advances in Neural Information Processing Systems 31 (NeurIPS 2018), pages: 6434-6444, (Editors: S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett), Curran Associates, Inc., 2018 (inproceedings)

al

Github link (url) Project Page [BibTex]

Github link (url) Project Page [BibTex]


no image
Collectives of Spinning Mobile Microrobots for Navigation and Object Manipulation at the Air-Water Interface

Wang, W., Kishore, V., Koens, L., Lauga, E., Sitti, M.

In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 1-9, 2018 (inproceedings)

pi

[BibTex]

[BibTex]


Systematic self-exploration of behaviors for robots in a dynamical systems framework
Systematic self-exploration of behaviors for robots in a dynamical systems framework

Pinneri, C., Martius, G.

In Proc. Artificial Life XI, pages: 319-326, MIT Press, Cambridge, MA, 2018 (inproceedings)

Abstract
One of the challenges of this century is to understand the neural mechanisms behind cognitive control and learning. Recent investigations propose biologically plausible synaptic mechanisms for self-organizing controllers, in the spirit of Hebbian learning. In particular, differential extrinsic plasticity (DEP) [Der and Martius, PNAS 2015], has proven to enable embodied agents to self-organize their individual sensorimotor development, and generate highly coordinated behaviors during their interaction with the environment. These behaviors are attractors of a dynamical system. In this paper, we use the DEP rule to generate attractors and we combine it with a “repelling potential” which allows the system to actively explore all its attractor behaviors in a systematic way. With a view to a self-determined exploration of goal-free behaviors, our framework enables switching between different motion patterns in an autonomous and sequential fashion. Our algorithm is able to recover all the attractor behaviors in a toy system and it is also effective in two simulated environments. A spherical robot discovers all its major rolling modes and a hexapod robot learns to locomote in 50 different ways in 30min.

al

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Endo-VMFuseNet: A Deep Visual-Magnetic Sensor Fusion Approach for Endoscopic Capsule Robots

Turan, M., Almalioglu, Y., Gilbert, H. B., Sari, A. E., Soylu, U., Sitti, M.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 1-7, 2018 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Endosensorfusion: Particle filtering-based multi-sensory data fusion with switching state-space model for endoscopic capsule robots

Turan, M., Almalioglu, Y., Gilbert, H., Araujo, H., Cemgil, T., Sitti, M.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 1-8, 2018 (inproceedings)

pi

[BibTex]

[BibTex]


Learning equations for extrapolation and control
Learning equations for extrapolation and control

Sahoo, S. S., Lampert, C. H., Martius, G.

In Proc. 35th International Conference on Machine Learning, ICML 2018, Stockholm, Sweden, 2018, 80, pages: 4442-4450, http://proceedings.mlr.press/v80/sahoo18a/sahoo18a.pdf, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, 2018 (inproceedings)

Abstract
We present an approach to identify concise equations from data using a shallow neural network approach. In contrast to ordinary black-box regression, this approach allows understanding functional relations and generalizing them from observed data to unseen parts of the parameter space. We show how to extend the class of learnable equations for a recently proposed equation learning network to include divisions, and we improve the learning and model selection strategy to be useful for challenging real-world data. For systems governed by analytical expressions, our method can in many cases identify the true underlying equation and extrapolate to unseen domains. We demonstrate its effectiveness by experiments on a cart-pendulum system, where only 2 random rollouts are required to learn the forward dynamics and successfully achieve the swing-up task.

al

Code Arxiv Poster Slides link (url) Project Page [BibTex]

Code Arxiv Poster Slides link (url) Project Page [BibTex]


Robust Affordable 3D Haptic Sensation via Learning Deformation Patterns
Robust Affordable 3D Haptic Sensation via Learning Deformation Patterns

Sun, H., Martius, G.

Proceedings International Conference on Humanoid Robots, pages: 846-853, IEEE, New York, NY, USA, 2018 IEEE-RAS International Conference on Humanoid Robots, 2018, Oral Presentation (conference)

Abstract
Haptic sensation is an important modality for interacting with the real world. This paper proposes a general framework of inferring haptic forces on the surface of a 3D structure from internal deformations using a small number of physical sensors instead of employing dense sensor arrays. Using machine learning techniques, we optimize the sensor number and their placement and are able to obtain high-precision force inference for a robotic limb using as few as 9 sensors. For the optimal and sparse placement of the measurement units (strain gauges), we employ data-driven methods based on data obtained by finite element simulation. We compare data-driven approaches with model-based methods relying on geometric distance and information criteria such as Entropy and Mutual Information. We validate our approach on a modified limb of the “Poppy” robot [1] and obtain 8 mm localization precision.

al

DOI Project Page [BibTex]

DOI Project Page [BibTex]

2009


no image
Characterization of bacterial actuation of micro-objects

Behkam, B., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 1022-1027, 2009 (inproceedings)

pi

[BibTex]

2009


[BibTex]


no image
Compliant footpad design analysis for a bio-inspired quadruped amphibious robot

Park, H. S., Sitti, M.

In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages: 645-651, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
A novel artificial hair receptor based on aligned PVDF micro/nano fibers

Weiting, Liu, Bilsay, Sumer, Cesare, Stefanini, Arianna, Menciassi, Fei, Li, Dajing, Chen, Paolo, Dario, Metin, Sitti, Xin, Fu

In Robotics and Biomimetics, 2008. ROBIO 2008. IEEE International Conference on, pages: 49-54, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Waalbot: Agile climbing with synthetic fibrillar dry adhesives

Murphy, M. P., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 1599-1600, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Piezoelectric ultrasonic resonant micromotor with a volume of less than 1 mm 3 for use in medical microbots

Watson, B., Friend, J., Yeo, L., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 2225-2230, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Dynamic modeling and analysis of pitch motion of a basilisk lizard inspired quadruped robot running on water

Park, H. S., Floyd, S., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 2655-2660, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
A miniature ceiling walking robot with flat tacky elastomeric footpads

Unver, O., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 2276-2281, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Tankbot: A miniature, peeling based climber on rough and smooth surfaces

Unver, O., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 2282-2287, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Automated 2-D nanoparticle manipulation with an atomic force microscope

Onal, C. D., Ozcan, O., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 1814-1819, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Microparticle manipulation using multiple untethered magnetic micro-robots on an electrostatic surface

Floyd, S., Pawashe, C., Sitti, M.

In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages: 528-533, 2009 (inproceedings)

pi

[BibTex]

[BibTex]

2008


no image
Simulation and analysis of a passive pitch reversal flapping wing mechanism for an aerial robotic platform

Arabagi, V., Sitti, M.

In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, pages: 1260-1265, 2008 (inproceedings)

pi

Project Page [BibTex]

2008


Project Page [BibTex]


no image
Fabrication and Characterization of Biologically Inspired Mushroom-Shaped Elastomer Microfiber Arrays

Kim, S., Sitti, M.

In ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pages: 839-847, 2008 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Gecko inspired micro-fibrillar adhesives for wall climbing robots on micro/nanoscale rough surfaces

Aksak, B., Murphy, M. P., Sitti, M.

In Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, pages: 3058-3063, 2008 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Miniature Mobile Robots Down to Micron Scale

Sitti, M.

In Micro-NanoMechatronics and Human Science, 2008. MHS 2008. International Symposium on, pages: 525-525, 2008 (inproceedings)

pi

[BibTex]

[BibTex]