Header logo is


2016


no image
Quantifying Therapist Practitioner Roles Using Video-based Analysis: Can We Reliably Model Therapist-Patient Interactions During Task-Oriented Therapy?

Mendonca, R., Johnson, M. J., Laskin, S., Adair, L., Mohan, M.

pages: E55-E56, Abstract in the Archives of Physical Medicine and Rehabilitation, October 2016 (misc)

hi

DOI [BibTex]

2016


DOI [BibTex]


no image
Supplemental material for ’Communication Rate Analysis for Event-based State Estimation’

Ebner, S., Trimpe, S.

Max Planck Institute for Intelligent Systems, January 2016 (techreport)

am ics

PDF [BibTex]

PDF [BibTex]


no image
Design of a Low-Cost Platform for Autonomous Mobile Service Robots

Eaton, E., Mucchiani, C., Mohan, M., Isele, D., Luná, J. M., Clingerman, C.

Workshop paper (7 pages) presented at the 25th International Joint Conference on Artificial Intelligence (IJCAI) Workshop on Autonomous Mobile Service Robots, New York, USA, 2016 (misc)

Abstract
Most current autonomous mobile service robots are either expensive commercial platforms or custom manufactured for research environments, limiting their availability. We present the design for a lowcost service robot based on the widely used TurtleBot 2 platform, with the goal of making service robots affordable and accessible to the research, educational, and hobbyist communities. Our design uses a set of simple and inexpensive modifications to transform the TurtleBot 2 into a 4.5ft (1.37m) tall tour-guide or telepresence-style robot, capable of performing a wide variety of indoor service tasks. The resulting platform provides a shoulder-height touchscreen and 3D camera for interaction, an optional low-cost arm for manipulation, enhanced onboard computation, autonomous charging, and up to 6 hours of runtime. The resulting platform can support many of the tasks performed by significantly more expensive service robots. For compatibility with existing software packages, the service robot runs the Robot Operating System (ROS).

hi

link (url) [BibTex]

link (url) [BibTex]

2008


no image
Biologically Inspired Polymer Micro-Patterned Adhesives

Cheung, E., Sitti, M.

EDGEWOOD CHEMICAL BIOLOGICAL CENTER ABERDEEN PROVING GROUND MD, 2008 (techreport)

pi

[BibTex]

2008


[BibTex]


no image
Efficient inverse kinematics algorithms for highdimensional movement systems

Tevatia, G., Schaal, S.

CLMC Technical Report: TR-CLMC-2008-1, 2008, clmc (techreport)

Abstract
Real-time control of the endeffector of a humanoid robot in external coordinates requires computationally efficient solutions of the inverse kinematics problem. In this context, this paper investigates methods of resolved motion rate control (RMRC) that employ optimization criteria to resolve kinematic redundancies. In particular we focus on two established techniques, the pseudo inverse with explicit optimization and the extended Jacobian method. We prove that the extended Jacobian method includes pseudo-inverse methods as a special solution. In terms of computational complexity, however, pseudo-inverse and extended Jacobian differ significantly in favor of pseudo-inverse methods. Employing numerical estimation techniques, we introduce a computationally efficient version of the extended Jacobian with performance comparable to the original version. Our results are illustrated in simulation studies with a multiple degree-offreedom robot, and were evaluated on an actual 30 degree-of-freedom full-body humanoid robot.

am

link (url) [BibTex]

link (url) [BibTex]