Header logo is


2020


no image
Sliding Mode Control with Gaussian Process Regression for Underwater Robots

Lima, G. S., Trimpe, S., Bessa, W. M.

Journal of Intelligent & Robotic Systems, January 2020 (article)

ics

DOI [BibTex]

2020


DOI [BibTex]


Hierarchical Event-triggered Learning for Cyclically Excited Systems with Application to Wireless Sensor Networks
Hierarchical Event-triggered Learning for Cyclically Excited Systems with Application to Wireless Sensor Networks

Beuchert, J., Solowjow, F., Raisch, J., Trimpe, S., Seel, T.

IEEE Control Systems Letters, 4(1):103-108, January 2020 (article)

ics

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]


Control-guided Communication: Efficient Resource Arbitration and Allocation in Multi-hop Wireless Control Systems
Control-guided Communication: Efficient Resource Arbitration and Allocation in Multi-hop Wireless Control Systems

Baumann, D., Mager, F., Zimmerling, M., Trimpe, S.

IEEE Control Systems Letters, 4(1):127-132, January 2020 (article)

ics

arXiv PDF DOI [BibTex]

arXiv PDF DOI [BibTex]


no image
Analytical classical density functionals from an equation learning network

Lin, S., Martius, G., Oettel, M.

The Journal of Chemical Physics, 152(2):021102, 2020, arXiv preprint \url{https://arxiv.org/abs/1910.12752} (article)

al

Preprint_PDF DOI [BibTex]

Preprint_PDF DOI [BibTex]


no image
Visual-Inertial Mapping with Non-Linear Factor Recovery

Usenko, V., Demmel, N., Schubert, D., Stückler, J., Cremers, D.

IEEE Robotics and Automation Letters (RA-L), 5, 2020, accepted for presentation at IEEE International Conference on Robotics and Automation (ICRA) 2020, to appear, arXiv:1904.06504 (article)

Abstract
Cameras and inertial measurement units are complementary sensors for ego-motion estimation and environment mapping. Their combination makes visual-inertial odometry (VIO) systems more accurate and robust. For globally consistent mapping, however, combining visual and inertial information is not straightforward. To estimate the motion and geometry with a set of images large baselines are required. Because of that, most systems operate on keyframes that have large time intervals between each other. Inertial data on the other hand quickly degrades with the duration of the intervals and after several seconds of integration, it typically contains only little useful information. In this paper, we propose to extract relevant information for visual-inertial mapping from visual-inertial odometry using non-linear factor recovery. We reconstruct a set of non-linear factors that make an optimal approximation of the information on the trajectory accumulated by VIO. To obtain a globally consistent map we combine these factors with loop-closing constraints using bundle adjustment. The VIO factors make the roll and pitch angles of the global map observable, and improve the robustness and the accuracy of the mapping. In experiments on a public benchmark, we demonstrate superior performance of our method over the state-of-the-art approaches.

ev

[BibTex]

[BibTex]


Spatial Scheduling of Informative Meetings for Multi-Agent Persistent Coverage
Spatial Scheduling of Informative Meetings for Multi-Agent Persistent Coverage

Haksar, R. N., Trimpe, S., Schwager, M.

IEEE Robotics and Automation Letters, 2020 (article) Accepted

ics

DOI [BibTex]

DOI [BibTex]


Event-triggered Learning
Event-triggered Learning

Solowjow, F., Trimpe, S.

Automatica, 2020 (article) Accepted

ics

arXiv PDF Project Page [BibTex]


Safe and Fast Tracking on a Robot Manipulator: Robust MPC and Neural Network Control
Safe and Fast Tracking on a Robot Manipulator: Robust MPC and Neural Network Control

Nubert, J., Koehler, J., Berenz, V., Allgower, F., Trimpe, S.

IEEE Robotics and Automation Letters, 2020 (article) Accepted

Abstract
Fast feedback control and safety guarantees are essential in modern robotics. We present an approach that achieves both by combining novel robust model predictive control (MPC) with function approximation via (deep) neural networks (NNs). The result is a new approach for complex tasks with nonlinear, uncertain, and constrained dynamics as are common in robotics. Specifically, we leverage recent results in MPC research to propose a new robust setpoint tracking MPC algorithm, which achieves reliable and safe tracking of a dynamic setpoint while guaranteeing stability and constraint satisfaction. The presented robust MPC scheme constitutes a one-layer approach that unifies the often separated planning and control layers, by directly computing the control command based on a reference and possibly obstacle positions. As a separate contribution, we show how the computation time of the MPC can be drastically reduced by approximating the MPC law with a NN controller. The NN is trained and validated from offline samples of the MPC, yielding statistical guarantees, and used in lieu thereof at run time. Our experiments on a state-of-the-art robot manipulator are the first to show that both the proposed robust and approximate MPC schemes scale to real-world robotic systems.

am ics

arXiv PDF DOI [BibTex]

arXiv PDF DOI [BibTex]

2018


no image
Learning an Approximate Model Predictive Controller with Guarantees

Hertneck, M., Koehler, J., Trimpe, S., Allgöwer, F.

IEEE Control Systems Letters, 2(3):543-548, July 2018 (article)

Abstract
A supervised learning framework is proposed to approximate a model predictive controller (MPC) with reduced computational complexity and guarantees on stability and constraint satisfaction. The framework can be used for a wide class of nonlinear systems. Any standard supervised learning technique (e.g. neural networks) can be employed to approximate the MPC from samples. In order to obtain closed-loop guarantees for the learned MPC, a robust MPC design is combined with statistical learning bounds. The MPC design ensures robustness to inaccurate inputs within given bounds, and Hoeffding’s Inequality is used to validate that the learned MPC satisfies these bounds with high confidence. The result is a closed-loop statistical guarantee on stability and constraint satisfaction for the learned MPC. The proposed learning-based MPC framework is illustrated on a nonlinear benchmark problem, for which we learn a neural network controller with guarantees.

ics

arXiv PDF DOI [BibTex]

2018


arXiv PDF DOI [BibTex]


no image
Nonlinear decoding of a complex movie from the mammalian retina

Botella-Soler, V., Deny, S., Martius, G., Marre, O., Tkačik, G.

PLOS Computational Biology, 14(5):1-27, Public Library of Science, May 2018 (article)

Abstract
Author summary Neurons in the retina transform patterns of incoming light into sequences of neural spikes. We recorded from ∼100 neurons in the rat retina while it was stimulated with a complex movie. Using machine learning regression methods, we fit decoders to reconstruct the movie shown from the retinal output. We demonstrated that retinal code can only be read out with a low error if decoders make use of correlations between successive spikes emitted by individual neurons. These correlations can be used to ignore spontaneous spiking that would, otherwise, cause even the best linear decoders to “hallucinate” nonexistent stimuli. This work represents the first high resolution single-trial full movie reconstruction and suggests a new paradigm for separating spontaneous from stimulus-driven neural activity.

al

DOI [BibTex]

DOI [BibTex]


no image
Distributed Event-Based State Estimation for Networked Systems: An LMI Approach

Muehlebach, M., Trimpe, S.

IEEE Transactions on Automatic Control, 63(1):269-276, January 2018 (article)

am ics

arXiv (extended version) DOI Project Page [BibTex]

arXiv (extended version) DOI Project Page [BibTex]


no image
Numerical Quadrature for Probabilistic Policy Search

Vinogradska, J., Bischoff, B., Achterhold, J., Koller, T., Peters, J.

IEEE Transactions on Pattern Analysis and Machine Intelligence, pages: 1-1, 2018 (article)

ev

DOI [BibTex]

DOI [BibTex]

2013


no image
Information Driven Self-Organization of Complex Robotic Behaviors

Martius, G., Der, R., Ay, N.

PLoS ONE, 8(5):e63400, Public Library of Science, 2013 (article)

al

link (url) DOI [BibTex]

2013


link (url) DOI [BibTex]


no image
Linear combination of one-step predictive information with an external reward in an episodic policy gradient setting: a critical analysis

Zahedi, K., Martius, G., Ay, N.

Frontiers in Psychology, 4(801), 2013 (article)

Abstract
One of the main challenges in the field of embodied artificial intelligence is the open-ended autonomous learning of complex behaviours. Our approach is to use task-independent, information-driven intrinsic motivation(s) to support task-dependent learning. The work presented here is a preliminary step in which we investigate the predictive information (the mutual information of the past and future of the sensor stream) as an intrinsic drive, ideally supporting any kind of task acquisition. Previous experiments have shown that the predictive information (PI) is a good candidate to support autonomous, open-ended learning of complex behaviours, because a maximisation of the PI corresponds to an exploration of morphology- and environment-dependent behavioural regularities. The idea is that these regularities can then be exploited in order to solve any given task. Three different experiments are presented and their results lead to the conclusion that the linear combination of the one-step PI with an external reward function is not generally recommended in an episodic policy gradient setting. Only for hard tasks a great speed-up can be achieved at the cost of an asymptotic performance lost.

al

link (url) DOI [BibTex]


no image
Robustness of guided self-organization against sensorimotor disruptions

Martius, G.

Advances in Complex Systems, 16(02n03):1350001, 2013 (article)

Abstract
Self-organizing processes are crucial for the development of living beings. Practical applications in robots may benefit from the self-organization of behavior, e.g.~to increase fault tolerance and enhance flexibility, provided that external goals can also be achieved. We present results on the guidance of self-organizing control by visual target stimuli and show a remarkable robustness to sensorimotor disruptions. In a proof of concept study an autonomous wheeled robot is learning an object finding and ball-pushing task from scratch within a few minutes in continuous domains. The robustness is demonstrated by the rapid recovery of the performance after severe changes of the sensor configuration.

al

DOI [BibTex]

DOI [BibTex]