ei
Abdolmaleki, A., Lau, N., Reis, L., Peters, J., Neumann, G.
Contextual Policy Search for Linear and Nonlinear Generalization of a Humanoid Walking Controller
Journal of Intelligent & Robotic Systems, 83(3-4):393-408, (Editors: Luis Almeida, Lino Marques ), September 2016, Special Issue: Autonomous Robot Systems (article)
ei
Maeda, G., Ewerton, M., Koert, D., Peters, J.
Acquiring and Generalizing the Embodiment Mapping from Human Observations to Robot Skills
IEEE Robotics and Automation Letters, 1(2):784-791, July 2016 (article)
ei
Zhang, K., Wang, Z., Zhang, J., Schölkopf, B.
On estimation of functional causal models: General results and application to post-nonlinear causal model
ACM Transactions on Intelligent Systems and Technologies, 7(2):article no. 13, January 2016 (article)
ei
pn
Klenske, E. D., Zeilinger, M., Schölkopf, B., Hennig, P.
Gaussian Process-Based Predictive Control for Periodic Error Correction
IEEE Transactions on Control Systems Technology , 24(1):110-121, 2016 (article)
ei
Townsend, J., Koep, N., Weichwald, S.
Pymanopt: A Python Toolbox for Optimization on Manifolds using Automatic Differentiation
Journal of Machine Learning Research, 17(137):1-5, 2016 (article)
ei
Wang, D., Hogg, D. W., Foreman-Mackey, D., Schölkopf, B.
A Causal, Data-driven Approach to Modeling the Kepler Data
Publications of the Astronomical Society of the Pacific, 128(967):094503, 2016 (article)
am
ei
Daniel, C., van Hoof, H., Peters, J., Neumann, G.
Probabilistic Inference for Determining Options in Reinforcement Learning
Machine Learning, Special Issue, 104(2):337-357, (Editors: Gärtner, T., Nanni, M., Passerini, A. and Robardet, C.), European Conference on Machine Learning im Machine Learning, Journal Track, 2016, Best Student Paper Award of ECML-PKDD 2016 (article)
ei
Rothkegel, L. O. M., Trukenbrod, H. A., Schütt, H. H., Wichmann, F. A., Engbert, R.
Influence of initial fixation position in scene viewing
Vision Research, 129, pages: 33-49, 2016 (article)
ei
Wallis, T. S. A., Bethge, M., Wichmann, F. A.
Testing models of peripheral encoding using metamerism in an oddity paradigm
Journal of Vision, 16(2), 2016 (article)
ei
Schölkopf, B., Hogg, D., Wang, D., Foreman-Mackey, D., Janzing, D., Simon-Gabriel, C. J., Peters, J.
Modeling Confounding by Half-Sibling Regression
Proceedings of the National Academy of Science, 113(27):7391-7398, 2016 (article)
ei
pn
Klenske, E. D., Hennig, P.
Dual Control for Approximate Bayesian Reinforcement Learning
Journal of Machine Learning Research, 17(127):1-30, 2016 (article)
ei
Divine, M. R., Katiyar, P., Kohlhofer, U., Quintanilla-Martinez, L., Disselhorst, J. A., Pichler, B. J.
A Population Based Gaussian Mixture Model Incorporating 18F-FDG-PET and DW-MRI Quantifies Tumor Tissue Classes
Journal of Nuclear Medicine, 57(3):473-479, 2016 (article)
ei
Seith, F., Gatidis, S., Schmidt, H., Bezrukov, I., la Fougère, C., Nikolaou, K., Pfannenberg, C., Schwenzer, N.
Comparison of Positron Emission Tomography Quantification Using Magnetic Resonance–and Computed Tomography–Based Attenuation Correction in Physiological Tissues and Lesions: A Whole-Body Positron Emission Tomography/Magnetic Resonance Study in 66 Patients
Investigative Radiology, 51(1):66-71, 2016 (article)
ei
Gomez Rodriguez, M., Song, L., Daneshmand, H., Schölkopf, B.
Estimating Diffusion Networks: Recovery Conditions, Sample Complexity and Soft-thresholding Algorithm
Journal of Machine Learning Research, 17(90):1-29, 2016 (article)
ei
Schütt, H. H., Harmeling, S., Macke, J. H., Wichmann, F. A.
Painfree and accurate Bayesian estimation of psychometric functions for (potentially) overdispersed data
Vision Research, 122, pages: 105-123, 2016 (article)
ei
Grosse-Wentrup, M., Janzing, D., Siegel, M., Schölkopf, B.
Identification of causal relations in neuroimaging data with latent confounders: An instrumental variable approach
NeuroImage, 125, pages: 825-833, 2016 (article)
ei
Daniel, C., Neumann, G., Kroemer, O., Peters, J.
Hierarchical Relative Entropy Policy Search
Journal of Machine Learning Research, 17(93):1-50, 2016 (article)
ei
Muandet, K., Sriperumbudur, B., Fukumizu, K., Gretton, A., Schölkopf, B.
Kernel Mean Shrinkage Estimators
Journal of Machine Learning Research, 17(48):1-41, 2016 (article)
ei
Schuler, C. J., Hirsch, M., Harmeling, S., Schölkopf, B.
Learning to Deblur
IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(7):1439-1451, IEEE, 2016 (article)
ei
Jayaram, V., Alamgir, M., Altun, Y., Schölkopf, B., Grosse-Wentrup, M.
Transfer Learning in Brain-Computer Interfaces
IEEE Computational Intelligence Magazine, 11(1):20-31, 2016 (article)
ei
Weichwald, S., Grosse-Wentrup, M., Gretton, A.
MERLiN: Mixture Effect Recovery in Linear Networks
IEEE Journal of Selected Topics in Signal Processing, 10(7):1254-1266, 2016 (article)
ei
Peters, J., Bühlmann, P., Meinshausen, N.
Causal inference using invariant prediction: identification and confidence intervals
Journal of the Royal Statistical Society, Series B (Statistical Methodology), 78(5):947-1012, 2016, (with discussion) (article)
ei
Spirtes, P., Zhang, K.
Causal discovery and inference: concepts and recent methodological advances
Applied Informatics, 3(3):1-28, 2016 (article)
ei
Fomina, T., Lohmann, G., Erb, M., Ethofer, T., Schölkopf, B., Grosse-Wentrup, M.
Self-regulation of brain rhythms in the precuneus: a novel BCI paradigm for patients with ALS
Journal of Neural Engineering, 13(6):066021, 2016 (article)
ei
Gomez-Rodriguez, M., Song, L., Du, N., Zha, H., Schölkopf, B.
Influence Estimation and Maximization in Continuous-Time Diffusion Networks
ACM Transactions on Information Systems, 34(2):9:1-9:33, 2016 (article)
ei
Foreman-Mackey, D., Morton, T. D., Hogg, D. W., Agol, E., Schölkopf, B.
The population of long-period transiting exoplanets
The Astronomical Journal, 152(6):206, 2016 (article)
ei
Jäkel, F., Singh, M., Wichmann, F. A., Herzog, M. H.
An overview of quantitative approaches in Gestalt perception
Vision Research, 126, pages: 3-8, 2016 (article)
ei
Huang, H., Peloso, G. M., Howrigan, D., Rakitsch, B., Simon-Gabriel, C. J., Goldstein, J. I., Daly, M. J., Borgwardt, K., Neale, B. M.
Bootstrat: Population Informed Bootstrapping for Rare Variant Tests
bioRxiv, 2016, preprint (article)
ei
Rueckert, E., Camernik, J., Peters, J., Babic, J.
Probabilistic Movement Models Show that Postural Control Precedes and Predicts Volitional Motor Control
Nature PG: Scientific Reports, 6(Article number: 28455), 2016 (article)
ei
Mooij, J., Peters, J., Janzing, D., Zscheischler, J., Schölkopf, B.
Distinguishing cause from effect using observational data: methods and benchmarks
Journal of Machine Learning Research, 17(32):1-102, 2016 (article)
ei
Babbar, R., Partalas, I., Gaussier, E., Amini, M., Amblard, C.
Learning Taxonomy Adaptation in Large-scale Classification
Journal of Machine Learning Research, 17(98):1-37, 2016 (article)
ei
Janzing, D., Chaves, R., Schölkopf, B.
Algorithmic independence of initial condition and dynamical law in thermodynamics and causal inference
New Journal of Phyiscs, 18(9):093052, 2016 (article)
ei
Mohr, J., Seyfarth, J., Lueschow, A., Weber, J. E., Wichmann, F. A., Obermayer, K.
BOiS—Berlin Object in Scene Database: Controlled Photographic Images for Visual Search Experiments with Quantified Contextual Priors
Frontiers in Psychology, 2016 (article)
ei
Zhang, K., Li, J., Bareinboim, E., Schölkopf, B., Pearl, J.
Preface to the ACM TIST Special Issue on Causal Discovery and Inference
ACM Transactions on Intelligent Systems and Technologies, 7(2):article no. 17, 2016 (article)
ei
Rueckert, E., Kappel, D., Tanneberg, D., Pecevski, D., Peters, J.
Recurrent Spiking Networks Solve Planning Tasks
Nature PG: Scientific Reports, 6(Article number: 21142), 2016 (article)
ei
Genewein, T, Braun, DA
Bio-inspired feedback-circuit implementation of discrete, free energy optimizing, winner-take-all computations
Biological Cybernetics, 110(2):135–150, June 2016 (article)
ei
Grau-Moya, J, Ortega, PA, Braun, DA
Decision-Making under Ambiguity Is Modulated by Visual Framing, but Not by Motor vs. Non-Motor Context: Experiments and an Information-Theoretic Ambiguity Model
PLoS ONE, 11(4):1-21, April 2016 (article)
ei
Peters, J., Janzing, D., Schölkopf, B.
Causal Inference on Discrete Data using Additive Noise Models
IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(12):2436-2450, December 2011 (article)
ei
Becker, C., Hagmann, J., Müller, J., Koenig, D., Stegle, O., Borgwardt, K., Weigel, D.
Spontaneous epigenetic variation in the Arabidopsis thaliana methylome
Nature, 480(7376):245-249, December 2011 (article)
ei
Kalev, I., Habeck, M.
HHfrag: HMM-based fragment detection using HHpred
Bioinformatics, 27(22):3110-3116, November 2011 (article)
ei
Hachiya, H., Peters, J., Sugiyama, M.
Reward-Weighted Regression with Sample Reuse for Direct Policy Search in Reinforcement Learning
Neural Computation, 23(11):2798-2832, November 2011 (article)
ei
Nguyen-Tuong, D., Peters, J.
Model Learning in Robotics: a Survey
Cognitive Processing, 12(4):319-340, November 2011 (article)
ei
Lippert, C., Listgarten, J., Liu, Y., Kadie, CM., Davidson, RI., Heckerman, D.
FaST linear mixed models for genome-wide association studies
Nature Methods, 8(10):833–835, October 2011 (article)
ei
Ecker, A., Berens, P., Tolias, A., Bethge, M.
The effect of noise correlations in populations of diversely tuned neurons
Journal of Neuroscience, 31(40):14272-14283, October 2011 (article)
ei
Dinuzzo, F.
Analysis of Fixed-Point and Coordinate Descent Algorithms for Regularized Kernel Methods
IEEE Transactions on Neural Networks, 22(10):1576-1587, October 2011 (article)
ei
Mülling, K., Kober, J., Peters, J.
A biomimetic approach to robot table tennis
Adaptive Behavior , 19(5):359-376 , October 2011 (article)
ei
Cao, J., Schneeberger, K., Ossowski, S., Günther, T., Bender, S., Fitz, J., Koenig, D., Lanz, C., Stegle, O., Lippert, C., Wang, X., Ott, F., Müller, J., Alonso-Blanco, C., Borgwardt, K., Schmid, K., Weigel, D.
Whole-genome sequencing of multiple Arabidopsis thaliana populations
Nature Genetics, 43(10):956–963, October 2011 (article)
ei
Gan, X., Stegle, O., Behr, J., Steffen, J., Drewe, P., Hildebrand, K., Lyngsoe, R., Schultheiss, S., Osborne, E., Sreedharan, V., Kahles, A., Bohnert, R., Jean, G., Derwent, P., Kersey, P., Belfield, E., Harberd, N., Kemen, E., Toomajian, C., Kover, P., Clark, R., Rätsch, G., Mott, R.
Multiple reference genomes and transcriptomes for Arabidopsis thaliana
Nature, 477(7365):419–423, September 2011 (article)
ei
Shervashidze, N., Schweitzer, P., van Leeuwen, E., Mehlhorn, K., Borgwardt, M.
Weisfeiler-Lehman Graph Kernels
Journal of Machine Learning Research, 12, pages: 2539-2561, September 2011 (article)
ei
Grosse-Wentrup, M.
What are the Causes of Performance Variation in Brain-Computer Interfacing?
International Journal of Bioelectromagnetism, 13(3):115-116, September 2011 (article)