Header logo is


2020


3D Morphable Face Models - Past, Present and Future
3D Morphable Face Models - Past, Present and Future

Egger, B., Smith, W. A. P., Tewari, A., Wuhrer, S., Zollhoefer, M., Beeler, T., Bernard, F., Bolkart, T., Kortylewski, A., Romdhani, S., Theobalt, C., Blanz, V., Vetter, T.

ACM Transactions on Graphics, September 2020 (article)

Abstract
In this paper, we provide a detailed survey of 3D Morphable Face Models over the 20 years since they were first proposed. The challenges in building and applying these models, namely capture, modeling, image formation, and image analysis, are still active research topics, and we review the state-of-the-art in each of these areas. We also look ahead, identifying unsolved challenges, proposing directions for future research and highlighting the broad range of current and future applications.

ps

project page pdf preprint [BibTex]

2020


project page pdf preprint [BibTex]


Statistical reprogramming of macroscopic self-assembly with dynamic boundaries
Statistical reprogramming of macroscopic self-assembly with dynamic boundaries

Culha, U., Davidson, Z. S., Mastrangeli, M., Sitti, M.

Proceedings of the National Academy of Sciences, 117(21), May 2020 (article)

Abstract
Self-assembly is a ubiquitous process that can generate complex and functional structures via local interactions among a large set of simpler components. The ability to program the self-assembly pathway of component sets elucidates fundamental physics and enables alternative competitive fabrication technologies. Reprogrammability offers further opportunities for tuning structural and material properties but requires reversible selection from multistable self-assembling patterns, which remains a challenge. Here, we show statistical reprogramming of two-dimensional (2D), noncompact self-assembled structures by the dynamic confinement of orbitally shaken and magnetically repulsive millimeter-scale particles. Under a constant shaking regime, we control the rate of radius change of an assembly arena via moving hard boundaries and select among a finite set of self-assembled patterns repeatably and reversibly. By temporarily trapping particles in topologically identified stable states, we also demonstrate 2D reprogrammable stiffness and three-dimensional (3D) magnetic clutching of the self-assembled structures. Our reprogrammable system has prospective implications for the design of granular materials in a multitude of physical scales where out-of-equilibrium self-assembly can be realized with different numbers or types of particles. Our dynamic boundary regulation may also enable robust bottom-up control strategies for novel robotic assembly applications by designing more complex spatiotemporal interactions using mobile robots.

pi

DOI [BibTex]


General Movement Assessment from videos of computed {3D} infant body models is equally effective compared to conventional {RGB} Video rating
General Movement Assessment from videos of computed 3D infant body models is equally effective compared to conventional RGB Video rating

Schroeder, S., Hesse, N., Weinberger, R., Tacke, U., Gerstl, L., Hilgendorff, A., Heinen, F., Arens, M., Bodensteiner, C., Dijkstra, L. J., Pujades, S., Black, M., Hadders-Algra, M.

Early Human Development, 144, May 2020 (article)

Abstract
Background: General Movement Assessment (GMA) is a powerful tool to predict Cerebral Palsy (CP). Yet, GMA requires substantial training hampering its implementation in clinical routine. This inspired a world-wide quest for automated GMA. Aim: To test whether a low-cost, marker-less system for three-dimensional motion capture from RGB depth sequences using a whole body infant model may serve as the basis for automated GMA. Study design: Clinical case study at an academic neurodevelopmental outpatient clinic. Subjects: Twenty-nine high-risk infants were recruited and assessed at their clinical follow-up at 2-4 month corrected age (CA). Their neurodevelopmental outcome was assessed regularly up to 12-31 months CA. Outcome measures: GMA according to Hadders-Algra by a masked GMA-expert of conventional and computed 3D body model (“SMIL motion”) videos of the same GMs. Agreement between both GMAs was assessed, and sensitivity and specificity of both methods to predict CP at ≥12 months CA. Results: The agreement of the two GMA ratings was substantial, with κ=0.66 for the classification of definitely abnormal (DA) GMs and an ICC of 0.887 (95% CI 0.762;0.947) for a more detailed GM-scoring. Five children were diagnosed with CP (four bilateral, one unilateral CP). The GMs of the child with unilateral CP were twice rated as mildly abnormal. DA-ratings of both videos predicted bilateral CP well: sensitivity 75% and 100%, specificity 88% and 92% for conventional and SMIL motion videos, respectively. Conclusions: Our computed infant 3D full body model is an attractive starting point for automated GMA in infants at risk of CP.

ps

DOI [BibTex]

DOI [BibTex]


Learning Multi-Human Optical Flow
Learning Multi-Human Optical Flow

Ranjan, A., Hoffmann, D. T., Tzionas, D., Tang, S., Romero, J., Black, M. J.

International Journal of Computer Vision (IJCV), (128):873–-890, April 2020 (article)

Abstract
The optical flow of humans is well known to be useful for the analysis of human action. Recent optical flow methods focus on training deep networks to approach the problem. However, the training data used by them does not cover the domain of human motion. Therefore, we develop a dataset of multi-human optical flow and train optical flow networks on this dataset. We use a 3D model of the human body and motion capture data to synthesize realistic flow fields in both single-and multi-person images. We then train optical flow networks to estimate human flow fields from pairs of images. We demonstrate that our trained networks are more accurate than a wide range of top methods on held-out test data and that they can generalize well to real image sequences. The code, trained models and the dataset are available for research.

ps

Paper Publisher Version poster link (url) DOI [BibTex]

Paper Publisher Version poster link (url) DOI [BibTex]


no image
Adaptation and Robust Learning of Probabilistic Movement Primitives

Gomez-Gonzalez, S., Neumann, G., Schölkopf, B., Peters, J.

IEEE Transactions on Robotics, 36(2):366-379, IEEE, March 2020 (article)

ei

arXiv DOI Project Page [BibTex]

arXiv DOI Project Page [BibTex]


Gripping apparatus and method of producing a gripping apparatus
Gripping apparatus and method of producing a gripping apparatus

Song, S., Sitti, M., Drotlef, D., Majidi, C.

Google Patents, Febuary 2020, US Patent App. 16/610,209 (patent)

Abstract
The present invention relates to a gripping apparatus comprising a membrane; a flexible housing; with said membrane being fixedly connected to a periphery of the housing. The invention further relates to a method of producing a gripping apparatus.

pi

[BibTex]

[BibTex]


no image
Real Time Trajectory Prediction Using Deep Conditional Generative Models

Gomez-Gonzalez, S., Prokudin, S., Schölkopf, B., Peters, J.

IEEE Robotics and Automation Letters, 5(2):970-976, IEEE, January 2020 (article)

ei ps

arXiv DOI [BibTex]

arXiv DOI [BibTex]


Method of actuating a shape changeable member, shape changeable member and actuating system
Method of actuating a shape changeable member, shape changeable member and actuating system

Hu, W., Lum, G. Z., Mastrangeli, M., Sitti, M.

Google Patents, January 2020, US Patent App. 16/477,593 (patent)

Abstract
The present invention relates to a method of actuating a shape changeable member of actuatable material. The invention further relates to a shape changeable member and to a system comprising such a shape changeable member and a magnetic field apparatus.

pi

[BibTex]


Thermal Effects on the Crystallization Kinetics, and Interfacial Adhesion of Single-Crystal Phase-Change Gallium
Thermal Effects on the Crystallization Kinetics, and Interfacial Adhesion of Single-Crystal Phase-Change Gallium

Yunusa, M., Lahlou, A., Sitti, M.

Advanced Materials, Wiley Online Library, 2020 (article)

Abstract
Although substrates play an important role upon crystallization of supercooled liquids, the influences of surface temperature and thermal property have remained elusive. Here, the crystallization of supercooled phase‐change gallium (Ga) on substrates with different thermal conductivity is studied. The effect of interfacial temperature on the crystallization kinetics, which dictates thermo‐mechanical stresses between the substrate and the crystallized Ga, is investigated. At an elevated surface temperature, close to the melting point of Ga, an extended single‐crystal growth of Ga on dielectric substrates due to layering effect and annealing is realized without the application of external fields. Adhesive strength at the interfaces depends on the thermal conductivity and initial surface temperature of the substrates. This insight can be applicable to other liquid metals for industrial applications, and sheds more light on phase‐change memory crystallization.

pi

[BibTex]


Nanoerythrosome-functionalized biohybrid microswimmers
Nanoerythrosome-functionalized biohybrid microswimmers

Buss, N., Yasa, O., Alapan, Y., Akolpoglu, M. B., Sitti, M.

APL Bioengineering, 4, AIP Publishing LLC, 2020 (article)

pi

[BibTex]

[BibTex]


Injectable Nanoelectrodes Enable Wireless Deep Brain Stimulation of Native Tissue in Freely Moving Mice
Injectable Nanoelectrodes Enable Wireless Deep Brain Stimulation of Native Tissue in Freely Moving Mice

Kozielski, K. L., Jahanshahi, A., Gilbert, H. B., Yu, Y., Erin, O., Francisco, D., Alosaimi, F., Temel, Y., Sitti, M.

bioRxiv, Cold Spring Harbor Laboratory, 2020 (article)

pi

[BibTex]

[BibTex]


Magnetically Actuated Soft Capsule Endoscope for Fine-Needle Biopsy
Magnetically Actuated Soft Capsule Endoscope for Fine-Needle Biopsy

Son, D., Gilbert, H., Sitti, M.

Soft robotics, Mary Ann Liebert, Inc., publishers 140 Huguenot Street, 3rd Floor New …, 2020 (article)

pi

[BibTex]

[BibTex]


Mechanical coupling of puller and pusher active microswimmers influences motility
Mechanical coupling of puller and pusher active microswimmers influences motility

Singh, A. V., Kishore, V., Santamauro, G., Yasa, O., Bill, J., Sitti, M.

Langmuir, ACS Publications, 2020 (article)

pi

[BibTex]


Controlling two-dimensional collective formation and cooperative behavior of magnetic microrobot swarms
Controlling two-dimensional collective formation and cooperative behavior of magnetic microrobot swarms

Dong, X., Sitti, M.

The International Journal of Robotics Research, 2020 (article)

Abstract
Magnetically actuated mobile microrobots can access distant, enclosed, and small spaces, such as inside microfluidic channels and the human body, making them appealing for minimally invasive tasks. Despite their simplicity when scaling down, creating collective microrobots that can work closely and cooperatively, as well as reconfigure their formations for different tasks, would significantly enhance their capabilities such as manipulation of objects. However, a challenge of realizing such cooperative magnetic microrobots is to program and reconfigure their formations and collective motions with under-actuated control signals. This article presents a method of controlling 2D static and time-varying formations among collective self-repelling ferromagnetic microrobots (100 μm to 350 μm in diameter, up to 260 in number) by spatially and temporally programming an external magnetic potential energy distribution at the air–water interface or on solid surfaces. A general design method is introduced to program external magnetic potential energy using ferromagnets. A predictive model of the collective system is also presented to predict the formation and guide the design procedure. With the proposed method, versatile complex static formations are experimentally demonstrated and the programmability and scaling effects of formations are analyzed. We also demonstrate the collective mobility of these magnetic microrobots by controlling them to exhibit bio-inspired collective behaviors such as aggregation, directional motion with arbitrary swarm headings, and rotational swarming motion. Finally, the functions of the produced microrobotic swarm are demonstrated by controlling them to navigate through cluttered environments and complete reconfigurable cooperative manipulation tasks.

pi

DOI [BibTex]


Magnetic Resonance Imaging System--Driven Medical Robotics
Magnetic Resonance Imaging System–Driven Medical Robotics

Erin, O., Boyvat, M., Tiryaki, M. E., Phelan, M., Sitti, M.

Advanced Intelligent Systems, 2, Wiley Online Library, 2020 (article)

Abstract
Magnetic resonance imaging (MRI) system–driven medical robotics is an emerging field that aims to use clinical MRI systems not only for medical imaging but also for actuation, localization, and control of medical robots. Submillimeter scale resolution of MR images for soft tissues combined with the electromagnetic gradient coil–based magnetic actuation available inside MR scanners can enable theranostic applications of medical robots for precise image‐guided minimally invasive interventions. MRI‐driven robotics typically does not introduce new MRI instrumentation for actuation but instead focuses on converting already available instrumentation for robotic purposes. To use the advantages of this technology, various medical devices such as untethered mobile magnetic robots and tethered active catheters have been designed to be powered magnetically inside MRI systems. Herein, the state‐of‐the‐art progress, challenges, and future directions of MRI‐driven medical robotic systems are reviewed.

pi

[BibTex]

[BibTex]


Characterization and Thermal Management of a DC Motor-Driven Resonant Actuator for Miniature Mobile Robots with Oscillating Limbs
Characterization and Thermal Management of a DC Motor-Driven Resonant Actuator for Miniature Mobile Robots with Oscillating Limbs

Colmenares, D., Kania, R., Liu, M., Sitti, M.

arXiv preprint arXiv:2002.00798, 2020 (article)

Abstract
In this paper, we characterize the performance of and develop thermal management solutions for a DC motor-driven resonant actuator developed for flapping wing micro air vehicles. The actuator, a DC micro-gearmotor connected in parallel with a torsional spring, drives reciprocal wing motion. Compared to the gearmotor alone, this design increased torque and power density by 161.1% and 666.8%, respectively, while decreasing the drawn current by 25.8%. Characterization of the actuator, isolated from nonlinear aerodynamic loading, results in standard metrics directly comparable to other actuators. The micro-motor, selected for low weight considerations, operates at high power for limited duration due to thermal effects. To predict system performance, a lumped parameter thermal circuit model was developed. Critical model parameters for this micro-motor, two orders of magnitude smaller than those previously characterized, were identified experimentally. This included the effects of variable winding resistance, bushing friction, speed-dependent forced convection, and the addition of a heatsink. The model was then used to determine a safe operation envelope for the vehicle and to design a weight-optimal heatsink. This actuator design and thermal modeling approach could be applied more generally to improve the performance of any miniature mobile robot or device with motor-driven oscillating limbs or loads.

pi

[BibTex]


Pros and Cons: Magnetic versus Optical Microrobots
Pros and Cons: Magnetic versus Optical Microrobots

Sitti, M., Wiersma, D. S.

Advanced Materials, Wiley Online Library, 2020 (article)

Abstract
Mobile microrobotics has emerged as a new robotics field within the last decade to create untethered tiny robots that can access and operate in unprecedented, dangerous, or hard‐to‐reach small spaces noninvasively toward disruptive medical, biotechnology, desktop manufacturing, environmental remediation, and other potential applications. Magnetic and optical actuation methods are the most widely used actuation methods in mobile microrobotics currently, in addition to acoustic and biological (cell‐driven) actuation approaches. The pros and cons of these actuation methods are reported here, depending on the given context. They can both enable long‐range, fast, and precise actuation of single or a large number of microrobots in diverse environments. Magnetic actuation has unique potential for medical applications of microrobots inside nontransparent tissues at high penetration depths, while optical actuation is suitable for more biotechnology, lab‐/organ‐on‐a‐chip, and desktop manufacturing types of applications with much less surface penetration depth requirements or with transparent environments. Combining both methods in new robot designs can have a strong potential of combining the pros of both methods. There is still much progress needed in both actuation methods to realize the potential disruptive applications of mobile microrobots in real‐world conditions.

pi

[BibTex]

[BibTex]


Selectively Controlled Magnetic Microrobots with Opposing Helices
Selectively Controlled Magnetic Microrobots with Opposing Helices

Giltinan, J., Katsamba, P., Wang, W., Lauga, E., Sitti, M.

Applied Physics Letters, 116, AIP Publishing LLC, 2020 (article)

pi

[BibTex]

[BibTex]


no image
An Adaptive Optimizer for Measurement-Frugal Variational Algorithms

Kübler, J. M., Arrasmith, A., Cincio, L., Coles, P. J.

Quantum, 4, pages: 263, 2020 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Microscale Polarization Color Pixels from Liquid Crystal Elastomers

Yubing, , Hamed, , Metin,

Advanced Optical Materials, 2020 (article) Accepted

pi

[BibTex]

[BibTex]


Cohesive self-organization of mobile microrobotic swarms
Cohesive self-organization of mobile microrobotic swarms

Yigit, B., Alapan, Y., Sitti, M.

arXiv preprint arXiv:1907.05856, 2020 (article)

pi

[BibTex]

[BibTex]


Bio-inspired Flexible Twisting Wings Increase Lift and Efficiency of a Flapping Wing Micro Air Vehicle
Bio-inspired Flexible Twisting Wings Increase Lift and Efficiency of a Flapping Wing Micro Air Vehicle

Colmenares, D., Kania, R., Zhang, W., Sitti, M.

arXiv preprint arXiv:2001.11586, 2020 (article)

Abstract
We investigate the effect of wing twist flexibility on lift and efficiency of a flapping-wing micro air vehicle capable of liftoff. Wings used previously were chosen to be fully rigid due to modeling and fabrication constraints. However, biological wings are highly flexible and other micro air vehicles have successfully utilized flexible wing structures for specialized tasks. The goal of our study is to determine if dynamic twisting of flexible wings can increase overall aerodynamic lift and efficiency. A flexible twisting wing design was found to increase aerodynamic efficiency by 41.3%, translational lift production by 35.3%, and the effective lift coefficient by 63.7% compared to the rigid-wing design. These results exceed the predictions of quasi-steady blade element models, indicating the need for unsteady computational fluid dynamics simulations of twisted flapping wings.

pi

[BibTex]

[BibTex]


Acoustically powered surface-slipping mobile microrobots
Acoustically powered surface-slipping mobile microrobots

Aghakhani, A., Yasa, O., Wrede, P., Sitti, M.

Proceedings of the National Academy of Sciences, 117, National Acad Sciences, 2020 (article)

Abstract
Untethered synthetic microrobots have significant potential to revolutionize minimally invasive medical interventions in the future. However, their relatively slow speed and low controllability near surfaces typically are some of the barriers standing in the way of their medical applications. Here, we introduce acoustically powered microrobots with a fast, unidirectional surface-slipping locomotion on both flat and curved surfaces. The proposed three-dimensionally printed, bullet-shaped microrobot contains a spherical air bubble trapped inside its internal body cavity, where the bubble is resonated using acoustic waves. The net fluidic flow due to the bubble oscillation orients the microrobot's axisymmetric axis perpendicular to the wall and then propels it laterally at very high speeds (up to 90 body lengths per second with a body length of 25 µm) while inducing an attractive force toward the wall. To achieve unidirectional locomotion, a small fin is added to the microrobot’s cylindrical body surface, which biases the propulsion direction. For motion direction control, the microrobots are coated anisotropically with a soft magnetic nanofilm layer, allowing steering under a uniform magnetic field. Finally, surface locomotion capability of the microrobots is demonstrated inside a three-dimensional circular cross-sectional microchannel under acoustic actuation. Overall, the combination of acoustic powering and magnetic steering can be effectively utilized to actuate and navigate these microrobots in confined and hard-to-reach body location areas in a minimally invasive fashion.

pi

[BibTex]

[BibTex]


no image
Morphology-Dependent Immunogenicity Obliges a Compromise on the Locomotion-Focused Design of Medical Microrobots

Ceren, , Hakan, , Ugur, , Anna-Maria, , Metin,

Science Robotics, 2020 (article) Accepted

pi

[BibTex]

[BibTex]


Bioinspired underwater locomotion of light-driven liquid crystal gels
Bioinspired underwater locomotion of light-driven liquid crystal gels

Shahsavan, H., Aghakhani, A., Zeng, H., Guo, Y., Davidson, Z. S., Priimagi, A., Sitti, M.

Proceedings of the National Academy of Sciences, National Acad Sciences, 2020 (article)

Abstract
Untethered dynamic shape programming and control of soft materials have significant applications in technologies such as soft robots, medical devices, organ-on-a-chip, and optical devices. Here, we present a solution to remotely actuate and move soft materials underwater in a fast, efficient, and controlled manner using photoresponsive liquid crystal gels (LCGs). LCG constructs with engineered molecular alignment show a low and sharp phase-transition temperature and experience considerable density reduction by light exposure, thereby allowing rapid and reversible shape changes. We demonstrate different modes of underwater locomotion, such as crawling, walking, jumping, and swimming, by localized and time-varying illumination of LCGs. The diverse locomotion modes of smart LCGs can provide a new toolbox for designing efficient light-fueled soft robots in fluid-immersed media.

pi

[BibTex]

[BibTex]


Additive manufacturing of cellulose-based materials with continuous, multidirectional stiffness gradients
Additive manufacturing of cellulose-based materials with continuous, multidirectional stiffness gradients

Giachini, P., Gupta, S., Wang, W., Wood, D., Yunusa, M., Baharlou, E., Sitti, M., Menges, A.

Science Advances, 6, American Association for the Advancement of Science, 2020 (article)

Abstract
Functionally graded materials (FGMs) enable applications in fields such as biomedicine and architecture, but their fabrication suffers from shortcomings in gradient continuity, interfacial bonding, and directional freedom. In addition, most commercial design software fail to incorporate property gradient data, hindering explorations of the design space of FGMs. Here, we leveraged a combined approach of materials engineering and digital processing to enable extrusion-based multimaterial additive manufacturing of cellulose-based tunable viscoelastic materials with continuous, high-contrast, and multidirectional stiffness gradients. A method to engineer sets of cellulose-based materials with similar compositions, yet distinct mechanical and rheological properties, was established. In parallel, a digital workflow was developed to embed gradient information into design models with integrated fabrication path planning. The payoff of integrating these physical and digital tools is the ability to achieve the same stiffness gradient in multiple ways, opening design possibilities previously limited by the rigid coupling of material and geometry.

pi

[BibTex]

[BibTex]


no image
Introducing Progress in Biomedical Engineering; Issue 2 Vol 2

Sitti, M.

Progress in Biomedical Engineering, IOP Publishing, 2020 (article)

pi

[BibTex]

[BibTex]


Multi-wavelength steerable visible light-driven magnetic CoO-TiO2 microswimmers
Multi-wavelength steerable visible light-driven magnetic CoO-TiO2 microswimmers

Sridhar, V., Park, B., Guo, S., van Aken, P. A., Sitti, M.

ACS Applied Materials \& Interfaces, ACS Publications, 2020 (article)

pi

[BibTex]

[BibTex]

2016


Bioengineered and biohybrid bacteria-based systems for drug delivery
Bioengineered and biohybrid bacteria-based systems for drug delivery

Hosseinidoust, Z., Mostaghaci, B., Yasa, O., Park, B., Singh, A. V., Sitti, M.

Advanced Drug Delivery Reviews, 106, pages: 27-44, Elsevier, November 2016 (article)

Abstract
The use of bacterial cells as agents of medical therapy has a long history. Research that was ignited over a century ago with the accidental infection of cancer patients has matured into a platform technology that offers the promise of opening up new potential frontiers in medical treatment. Bacterial cells exhibit unique characteristics that make them well-suited as smart drug delivery agents. Our ability to genetically manipulate the molecular machinery of these cells enables the customization of their therapeutic action as well as its precise tuning and spatio-temporal control, allowing for the design of unique, complex therapeutic functions, unmatched by current drug delivery systems. Early results have been promising, but there are still many important challenges that must be addressed. We present a review of promises and challenges of employing bioengineered bacteria in drug delivery systems and introduce the biohybrid design concept as a new additional paradigm in bacteria-based drug delivery.

pi

DOI Project Page [BibTex]

2016


DOI Project Page [BibTex]


Creating body shapes from verbal descriptions by linking similarity spaces
Creating body shapes from verbal descriptions by linking similarity spaces

Hill, M. Q., Streuber, S., Hahn, C. A., Black, M. J., O’Toole, A. J.

Psychological Science, 27(11):1486-1497, November 2016, (article)

Abstract
Brief verbal descriptions of bodies (e.g. curvy, long-legged) can elicit vivid mental images. The ease with which we create these mental images belies the complexity of three-dimensional body shapes. We explored the relationship between body shapes and body descriptions and show that a small number of words can be used to generate categorically accurate representations of three-dimensional bodies. The dimensions of body shape variation that emerged in a language-based similarity space were related to major dimensions of variation computed directly from three-dimensional laser scans of 2094 bodies. This allowed us to generate three-dimensional models of people in the shape space using only their coordinates on analogous dimensions in the language-based description space. Human descriptions of photographed bodies and their corresponding models matched closely. The natural mapping between the spaces illustrates the role of language as a concise code for body shape, capturing perceptually salient global and local body features.

ps

pdf [BibTex]

pdf [BibTex]


A 5-D localization method for a magnetically manipulated untethered robot using a 2-D array of Hall-effect sensors
A 5-D localization method for a magnetically manipulated untethered robot using a 2-D array of Hall-effect sensors

Son, D., Yim, S., Sitti, M.

IEEE/ASME Transactions on Mechatronics, 21(2):708-716, IEEE, October 2016 (article)

Abstract
This paper introduces a new five-dimensional localization method for an untethered meso-scale magnetic robot, which is manipulated by a computer-controlled electromagnetic system. The developed magnetic localization setup is a two-dimensional array of mono-axial Hall-effect sensors, which measure the perpendicular magnetic fields at their given positions. We introduce two steps for localizing a magnetic robot more accurately. First, the dipole modeled magnetic field of the electromagnet is subtracted from the measured data in order to determine the robot's magnetic field. Secondly, the subtracted magnetic field is twice differentiated in the perpendicular direction of the array, so that the effect of the electromagnetic field in the localization process is minimized. Five variables regarding the position and orientation of the robot are determined by minimizing the error between the measured magnetic field and the modeled magnetic field in an optimization method. The resulting position error is 2.1±0.8 mm and angular error is 6.7±4.3° within the applicable range (5 cm) of magnetic field sensors at 200 Hz. The proposed localization method would be used for the position feedback control of untethered magnetic devices or robots for medical applications in the future.

pi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


High-Performance Multiresponsive Paper Actuators
High-Performance Multiresponsive Paper Actuators

Amjadi, M., Sitti, M.

ACS Nano, 10(11):10202-10210, American Chemical Society, October 2016 (article)

Abstract
There is an increasing demand for soft actuators because of their importance in soft robotics, artificial muscles, biomimetic devices, and beyond. However, the development of soft actuators capable of low-voltage operation, powerful actuation, and programmable shape-changing is still challenging. In this work, we propose programmable bilayer actuators that operate based on the large hygroscopic contraction of the copy paper and simultaneously large thermal expansion of the polypropylene film upon increasing the temperature. The electrothermally activated bending actuators can function with low voltages (≤ 8 V), low input electric power per area (P ≤ 0.14 W cm–2), and low temperature changes (≤ 35 °C). They exhibit reversible shape-changing behavior with curvature radii up to 1.07 cm–1 and bending angle of 360°, accompanied by powerful actuation. Besides the electrical activation, they can be powered by humidity or light irradiation. We finally demonstrate the use of our paper actuators as a soft gripper robot and a lightweight paper wing for aerial robotics.

pi

DOI Project Page Project Page [BibTex]

DOI Project Page Project Page [BibTex]


Programmable assembly of heterogeneous microparts by an untethered mobile capillary microgripper
Programmable assembly of heterogeneous microparts by an untethered mobile capillary microgripper

Giltinan, J., Diller, E., Sitti, M.

Lab on a Chip, 16(22):4445-4457, Royal Society of Chemistry, October 2016 (article)

Abstract
At the sub-millimeter scale, capillary forces enable robust and reversible adhesion between biological organisms and varied substrates. Current human-engineered mobile untethered micromanipulation systems rely on forces which scale poorly or utilize gripper-part designs that promote manipulation. Capillary forces, alternatively, are dependent upon the surface chemistry (which is scale independent) and contact perimeter, which conforms to the part surface. We report a mobile capillary microgripper that is able to pick and place parts of various materials and geometries, and is thus ideal for microassembly tasks that cannot be accomplished by large tethered manipulators. We achieve the programmable assembly of sub-millimeter parts in an enclosed three-dimensional aqueous environment by creating a capillary bridge between the targeted part and a synthetic, untethered, mobile body. The parts include both hydrophilic and hydrophobic components: hydrogel, kapton, human hair, and biological tissue. The 200 μm untethered system can be controlled with five-degrees-of-freedom and advances progress towards autonomous desktop manufacturing for tissue engineering, complex micromachines, microfluidic devices, and meta-materials.

pi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Composition-dependent underwater adhesion of catechol-bearing hydrogels
Composition-dependent underwater adhesion of catechol-bearing hydrogels

Wu, H., Sariola, V., Zhao, J., Ding, H., Sitti, M., Bettinger, C. J.

Polymer International, 65(11):1355-1359, John Wiley & Sons, Ltd, September 2016 (article)

Abstract
Interfacial adhesion-mediated transfer printing processes can integrate functional electronic microstructures with polymeric substrates that are bendable and stretchable. Transfer printing has also been extended to catechol-bearing adhesive hydrogels. This study presents indentation adhesion tests between catechol-bearing hydrogel substrates with catechol concentrations varying from 0 to 10% (mol/mol) and thin-film materials commonly used in microelectronic fabrication including polymers, noble metals and oxides. The results indicate that the interfacial adhesion of catechol-bearing hydrogels is positively correlated with the concentration of catechol-bearing monomers as well as the retraction velocity during transfer printing. This study can inform transfer printing processes for microfabricated structures to compliant hydrated substrates such as hygroscopic monomers, mesoporous polymer networks and hydrogels. © 2016 Society of Chemical Industry

pi

DOI [BibTex]

DOI [BibTex]


Bacteria-Driven Particles: Patterned and Specific Attachment of Bacteria on Biohybrid Bacteria-Driven Microswimmers (Adv. Healthcare Mater. 18/2016)
Bacteria-Driven Particles: Patterned and Specific Attachment of Bacteria on Biohybrid Bacteria-Driven Microswimmers (Adv. Healthcare Mater. 18/2016)

Singh, A. V., Sitti, M.

Advanced Healthcare Materials, 5(18):2306-2306, September 2016 (article)

Abstract
On page 2325, Ajay Vikram Singh and Metin Sitti propose a facile surface patterning technique and a specific, strong biotin–streptavidin bonding of bacteria on patterned surfaces to fabricate Janus particles that are propelled by the attached bacteria. Such bacteria-driven Janus microswimmers could be used for future medicine in targeted drug delivery and environmental remediation.

pi

DOI Project Page [BibTex]


no image
Contextual Policy Search for Linear and Nonlinear Generalization of a Humanoid Walking Controller

Abdolmaleki, A., Lau, N., Reis, L., Peters, J., Neumann, G.

Journal of Intelligent & Robotic Systems, 83(3-4):393-408, (Editors: Luis Almeida, Lino Marques ), September 2016, Special Issue: Autonomous Robot Systems (article)

ei

DOI [BibTex]

DOI [BibTex]


The effect of temperature and humidity on adhesion of a gecko-inspired adhesive: implications for the natural system
The effect of temperature and humidity on adhesion of a gecko-inspired adhesive: implications for the natural system

Stark, A. Y., Klittich, M. R., Sitti, M., Niewiarowski, P. H., Dhinojwala, A.

Scientific Reports, 6, pages: 30936, Nature Publishing Group, August 2016 (article)

Abstract
The adhesive system of geckos has inspired hundreds of synthetic adhesives. While this system has been used relentlessly as a source of inspiration, less work has been done in reverse, where synthetics are used to test questions and hypotheses about the natural system. Here we take such an approach. We tested shear adhesion of a mushroom-tipped synthetic gecko adhesive under conditions that produced perplexing results in the natural adhesive system. Synthetic samples were tested at two temperatures (12 °C and 32 °C) and four different humidity levels (30%, 55%, 70%, and 80% RH). Surprisingly, adhesive performance of the synthetic samples matched that of living geckos, suggesting that uncontrolled parameters in the natural system, such as surface chemistry and material changes, may not be as influential in whole-animal performance as previously thought. There was one difference, however, when comparing natural and synthetic adhesive performance. At 12 °C and 80% RH, adhesion of the synthetic structures was lower than expected based on the natural system’s performance. Our approach highlights a unique opportunity for both biologists and material scientists, where new questions and hypotheses can be fueled by joint comparisons of the natural and synthetic systems, ultimately improving knowledge of both.

pi

DOI [BibTex]

DOI [BibTex]


Magnetic propulsion of robotic sperms at low-Reynolds number
Magnetic propulsion of robotic sperms at low-Reynolds number

Khalil, I. S., Fatih Tabak, A., Klingner, A., Sitti, M.

Applied Physics Letters, 109(3):033701, AIP Publishing, July 2016 (article)

Abstract
We investigate the microswimming behaviour of robotic sperms in viscous fluids. These robotic sperms are fabricated from polystyrene dissolved in dimethyl formamide and iron-oxide nanoparticles. This composition allows the nanoparticles to be concentrated within the bead of the robotic sperm and provide magnetic dipole, whereas the flexibility of the ultra-thin tail enables flagellated locomotion using magnetic fields in millitesla range. We show that these robotic sperms have similar morphology and swimming behaviour to those of sperm cells. Moreover, we show experimentally that our robotic sperms swim controllably at an average speed of approximately one body length per second (around 125 μm s−1), and they are relatively faster than the microswimmers that depend on planar wave propulsion in low-Reynolds number fluids.

pi

DOI [BibTex]

DOI [BibTex]


no image
Acquiring and Generalizing the Embodiment Mapping from Human Observations to Robot Skills

Maeda, G., Ewerton, M., Koert, D., Peters, J.

IEEE Robotics and Automation Letters, 1(2):784-791, July 2016 (article)

ei

DOI [BibTex]

DOI [BibTex]


{Body Talk}: Crowdshaping Realistic {3D} Avatars with Words
Body Talk: Crowdshaping Realistic 3D Avatars with Words

Streuber, S., Quiros-Ramirez, M. A., Hill, M. Q., Hahn, C. A., Zuffi, S., O’Toole, A., Black, M. J.

ACM Trans. Graph. (Proc. SIGGRAPH), 35(4):54:1-54:14, July 2016 (article)

Abstract
Realistic, metrically accurate, 3D human avatars are useful for games, shopping, virtual reality, and health applications. Such avatars are not in wide use because solutions for creating them from high-end scanners, low-cost range cameras, and tailoring measurements all have limitations. Here we propose a simple solution and show that it is surprisingly accurate. We use crowdsourcing to generate attribute ratings of 3D body shapes corresponding to standard linguistic descriptions of 3D shape. We then learn a linear function relating these ratings to 3D human shape parameters. Given an image of a new body, we again turn to the crowd for ratings of the body shape. The collection of linguistic ratings of a photograph provides remarkably strong constraints on the metric 3D shape. We call the process crowdshaping and show that our Body Talk system produces shapes that are perceptually indistinguishable from bodies created from high-resolution scans and that the metric accuracy is sufficient for many tasks. This makes body “scanning” practical without a scanner, opening up new applications including database search, visualization, and extracting avatars from books.

ps

pdf web tool video talk (ppt) [BibTex]

pdf web tool video talk (ppt) [BibTex]


Six-degree-of-freedom magnetic actuation for wireless microrobotics
Six-degree-of-freedom magnetic actuation for wireless microrobotics

Diller, E., Giltinan, J., Lum, G. Z., Ye, Z., Sitti, M.

The International Journal of Robotics Research, 35(1-3):114-128, SAGE Publications Sage UK: London, England, June 2016 (article)

Abstract
Existing remotely actuated magnetic microrobots exhibit a maximum of only five-degree-of-freedom (DOF) actuation, as creation of a driving torque about the microrobot magnetization axis is not achievable. This lack of full orientation control limits the effectiveness of existing microrobots for precision tasks of object manipulation and orientation for advanced medical, biological and micromanufacturing applications. This paper presents a magnetic actuation method that allows remotely powered microrobots to achieve full six-DOF actuation by considering the case of a non-uniform magnetization profile within the microrobot body. This non-uniform magnetization allows for additional rigid-body torques to be induced from magnetic forces via a moment arm. A general analytical model presents the working principle for continuous and discrete magnetization profiles, which is applied to permanent or non-permanent (soft) magnet bodies. Several discrete-magnetization designs are also presented which possess reduced coupling between magnetic forces and induced rigid-body torques. Design guidelines are introduced which can be followed to ensure that a magnetic microrobot design is capable of six-DOF actuation. A simple permanent-magnet prototype is fabricated and used to quantitatively demonstrate the accuracy of the analytical model in a constrained-DOF environment and qualitatively for free motion in a viscous liquid three-dimensional environment. Results show that desired forces and torques can be created with high precision and limited parasitic actuation, allowing for full six-DOF actuation using limited feedback control

pi

DOI [BibTex]

DOI [BibTex]


Capturing Hands in Action using Discriminative Salient Points and Physics Simulation
Capturing Hands in Action using Discriminative Salient Points and Physics Simulation

Tzionas, D., Ballan, L., Srikantha, A., Aponte, P., Pollefeys, M., Gall, J.

International Journal of Computer Vision (IJCV), 118(2):172-193, June 2016 (article)

Abstract
Hand motion capture is a popular research field, recently gaining more attention due to the ubiquity of RGB-D sensors. However, even most recent approaches focus on the case of a single isolated hand. In this work, we focus on hands that interact with other hands or objects and present a framework that successfully captures motion in such interaction scenarios for both rigid and articulated objects. Our framework combines a generative model with discriminatively trained salient points to achieve a low tracking error and with collision detection and physics simulation to achieve physically plausible estimates even in case of occlusions and missing visual data. Since all components are unified in a single objective function which is almost everywhere differentiable, it can be optimized with standard optimization techniques. Our approach works for monocular RGB-D sequences as well as setups with multiple synchronized RGB cameras. For a qualitative and quantitative evaluation, we captured 29 sequences with a large variety of interactions and up to 150 degrees of freedom.

ps

Website pdf link (url) DOI Project Page [BibTex]

Website pdf link (url) DOI Project Page [BibTex]


System and method to magnetically actuate a capsule endoscopic robot for diagnosis and treatment
System and method to magnetically actuate a capsule endoscopic robot for diagnosis and treatment

Sitti, M., Yim, S.

May 2016, US Patent 9,445,711 (patent)

Abstract
Present invention describes a swallowable device with a soft, compliant exterior, whose shape can be changed through the use of magnetic fields, and which can be locomoted in a rolling motion through magnetic control from the exterior of the patient. The present invention could be used for a variety of medical applications inside the GI tract including but not limited to drug delivery, biopsy, heat cauterization, pH sensing, biochemical sensing, micro-surgery, and active imaging.

pi

link (url) [BibTex]


Gallium Adhesion: Phase Change of Gallium Enables Highly Reversible and Switchable Adhesion (Adv. Mater. 25/2016)
Gallium Adhesion: Phase Change of Gallium Enables Highly Reversible and Switchable Adhesion (Adv. Mater. 25/2016)

Ye, Z., Lum, G. Z., Song, S., Rich, S., Sitti, M.

Advanced Materials, 28(25):5087-5087, May 2016 (article)

Abstract
Gallium exhibits highly reversible and switchable adhesion when it undergoes a solid–liquid phase transition. The robustness of gallium is notable as it exhibits strong performance on a wide range of smooth and rough surfaces, under both dry and wet conditions. Gallium may therefore find numerous applications in transfer printing, robotics, electronic packaging, and biomedicine.

pi

DOI [BibTex]


Patterned and Specific Attachment of Bacteria on Biohybrid Bacteria-Driven Microswimmers
Patterned and Specific Attachment of Bacteria on Biohybrid Bacteria-Driven Microswimmers

Singh, A. V., Sitti, M.

Advanced Healthcare Materials, 5(18):2325-2331, May 2016 (article)

Abstract
A surface patterning technique and a specific and strong biotin–streptavidin bonding of bacteria on patterned surfaces are proposed to fabricate Janus particles that are propelled by the attached bacteria. Bacteria-driven Janus microswimmers with diameters larger than 3 μm show enhanced mean propulsion speed. Such microswimmers could be used for future applications such as targeted drug delivery and environmental remediation.

pi

DOI [BibTex]