Header logo is


2018


no image
Enhancing the Accuracy and Fairness of Human Decision Making

Valera, I., Singla, A., Gomez Rodriguez, M.

Advances in Neural Information Processing Systems 31, pages: 1774-1783, (Editors: S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett), Curran Associates, Inc., 32nd Annual Conference on Neural Information Processing Systems, December 2018 (conference)

ei

arXiv link (url) Project Page [BibTex]

2018


arXiv link (url) Project Page [BibTex]


no image
Non-factorised Variational Inference in Dynamical Systems

Ialongo, A. D., Van Der Wilk, M., Hensman, J., Rasmussen, C. E.

1st Symposion on Advances in Approximate Bayesian Inference, December 2018 (conference)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Boosting Black Box Variational Inference

Locatello*, F., Dresdner*, G., R., K., Valera, I., Rätsch, G.

Advances in Neural Information Processing Systems 31, pages: 3405-3415, (Editors: S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett), Curran Associates, Inc., 32nd Annual Conference on Neural Information Processing Systems, December 2018, *equal contribution (conference)

ei

arXiv link (url) Project Page [BibTex]

arXiv link (url) Project Page [BibTex]


no image
Consolidating the Meta-Learning Zoo: A Unifying Perspective as Posterior Predictive Inference

Gordon*, J., Bronskill*, J., Bauer*, M., Nowozin, S., Turner, R. E.

Workshop on Meta-Learning (MetaLearn 2018) at the 32nd Conference on Neural Information Processing Systems, December 2018, *equal contribution (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Versa: Versatile and Efficient Few-shot Learning

Gordon*, J., Bronskill*, J., Bauer*, M., Nowozin, S., Turner, R. E.

Third Workshop on Bayesian Deep Learning at the 32nd Conference on Neural Information Processing Systems, December 2018, *equal contribution (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
DP-MAC: The Differentially Private Method of Auxiliary Coordinates for Deep Learning

Harder, F., Köhler, J., Welling, M., Park, M.

Workshop on Privacy Preserving Machine Learning at the 32nd Conference on Neural Information Processing Systems, December 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Learning Invariances using the Marginal Likelihood

van der Wilk, M., Bauer, M., John, S. T., Hensman, J.

Advances in Neural Information Processing Systems 31, pages: 9960-9970, (Editors: S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett), Curran Associates, Inc., 32nd Annual Conference on Neural Information Processing Systems, December 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Deep Nonlinear Non-Gaussian Filtering for Dynamical Systems

Mehrjou, A., Schölkopf, B.

Workshop: Infer to Control: Probabilistic Reinforcement Learning and Structured Control at the 32nd Conference on Neural Information Processing Systems, December 2018 (conference)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Data-Efficient Hierarchical Reinforcement Learning

Nachum, O., Gu, S., Lee, H., Levine, S.

Advances in Neural Information Processing Systems 31, pages: 3307-3317, (Editors: S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett), Curran Associates, Inc., 32nd Annual Conference on Neural Information Processing Systems, December 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Resampled Priors for Variational Autoencoders

Bauer, M., Mnih, A.

Third Workshop on Bayesian Deep Learning at the 32nd Conference on Neural Information Processing Systems, December 2018 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Generalisation in humans and deep neural networks

Geirhos, R., Temme, C. R. M., Rauber, J., Schütt, H., Bethge, M., Wichmann, F. A.

Advances in Neural Information Processing Systems 31, pages: 7549-7561, (Editors: S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett), Curran Associates, Inc., 32nd Annual Conference on Neural Information Processing Systems, December 2018 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


Assessing Generative Models via Precision and Recall
Assessing Generative Models via Precision and Recall

Sajjadi, M. S. M., Bachem, O., Lucic, M., Bousquet, O., Gelly, S.

Advances in Neural Information Processing Systems 31, pages: 5234-5243, (Editors: S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett), Curran Associates, Inc., 32nd Annual Conference on Neural Information Processing Systems, December 2018 (conference)

ei

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


no image
Adaptive Skip Intervals: Temporal Abstraction for Recurrent Dynamical Models

Neitz, A., Parascandolo, G., Bauer, S., Schölkopf, B.

Advances in Neural Information Processing Systems 31, pages: 9838-9848, (Editors: S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett), Curran Associates, Inc., 32nd Annual Conference on Neural Information Processing Systems, December 2018 (conference)

ei

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


no image
A Computational Camera with Programmable Optics for Snapshot High Resolution Multispectral Imaging

Chen, J., Hirsch, M., Eberhardt, B., Lensch, H. P. A.

Computer Vision - ACCV 2018 - 14th Asian Conference on Computer Vision, December 2018 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Generalization in anti-causal learning

Kilbertus*, N., Parascandolo*, G., Schölkopf*, B.

NeurIPS 2018 Workshop on Critiquing and Correcting Trends in Machine Learning, December 2018, *authors are listed in alphabetical order (conference)

ei

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


Efficient Encoding of Dynamical Systems through Local Approximations
Efficient Encoding of Dynamical Systems through Local Approximations

Solowjow, F., Mehrjou, A., Schölkopf, B., Trimpe, S.

In Proceedings of the 57th IEEE International Conference on Decision and Control (CDC), pages: 6073 - 6079 , Miami, Fl, USA, December 2018 (inproceedings)

ei ics

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]


no image
Informative Features for Model Comparison

Jitkrittum, W., Kanagawa, H., Sangkloy, P., Hays, J., Schölkopf, B., Gretton, A.

Advances in Neural Information Processing Systems 31, pages: 816-827, (Editors: S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett), Curran Associates, Inc., 32nd Annual Conference on Neural Information Processing Systems, December 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Bayesian Nonparametric Hawkes Processes

Kapoor, J., Vergari, A., Gomez Rodriguez, M., Valera, I.

Bayesian Nonparametrics workshop at the 32nd Conference on Neural Information Processing Systems, December 2018 (conference)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Regularizing Reinforcement Learning with State Abstraction

Akrour, R., Veiga, F., Peters, J., Neuman, G.

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2018 (conference) Accepted

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Learning to Categorize Bug Reports with LSTM Networks

Gondaliya, K., Peters, J., Rueckert, E.

Proceedings of the 10th International Conference on Advances in System Testing and Validation Lifecycle (VALID), pages: 7-12, October 2018 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Domain Randomization for Simulation-Based Policy Optimization with Transferability Assessment

Muratore, F., Treede, F., Gienger, M., Peters, J.

2nd Annual Conference on Robot Learning (CoRL), 87, pages: 700-713, Proceedings of Machine Learning Research, PMLR, October 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Reinforcement Learning of Phase Oscillators for Fast Adaptation to Moving Targets

Maeda, G., Koc, O., Morimoto, J.

Proceedings of The 2nd Conference on Robot Learning (CoRL), 87, pages: 630-640, (Editors: Aude Billard, Anca Dragan, Jan Peters, Jun Morimoto ), PMLR, October 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Constraint-Space Projection Direct Policy Search

Akrour, R., Peters, J., Neuman, G.

14th European Workshop on Reinforcement Learning (EWRL), October 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Spatio-temporal Transformer Network for Video Restoration

Kim, T. H., Sajjadi, M. S. M., Hirsch, M., Schölkopf, B.

15th European Conference on Computer Vision (ECCV), Part III, 11207, pages: 111-127, Lecture Notes in Computer Science, (Editors: Vittorio Ferrari, Martial Hebert,Cristian Sminchisescu and Yair Weiss), Springer, September 2018 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Separating Reflection and Transmission Images in the Wild

Wieschollek, P., Gallo, O., Gu, J., Kautz, J.

European Conference on Computer Vision (ECCV), September 2018 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Risk-Sensitivity in Simulation Based Online Planning

Schmid, K., Belzner, L., Kiermeier, M., Neitz, A., Phan, T., Gabor, T., Linnhoff, C.

KI 2018: Advances in Artificial Intelligence - 41st German Conference on AI, pages: 229-240, (Editors: F. Trollmann and A. Y. Turhan), Springer, Cham, September 2018 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
The Unreasonable Effectiveness of Texture Transfer for Single Image Super-resolution

Gondal, M. W., Schölkopf, B., Hirsch, M.

Workshop and Challenge on Perceptual Image Restoration and Manipulation (PIRM) at the 15th European Conference on Computer Vision (ECCV), September 2018 (conference)

ei

arXiv URL [BibTex]

arXiv URL [BibTex]


no image
Discovering and Teaching Optimal Planning Strategies

Lieder, F., Callaway, F., Krueger, P. M., Das, P., Griffiths, T. L., Gul, S.

In The 14th biannual conference of the German Society for Cognitive Science, GK, September 2018, Falk Lieder and Frederick Callaway contributed equally to this publication. (inproceedings)

Abstract
How should we think and decide, and how can we learn to make better decisions? To address these questions we formalize the discovery of cognitive strategies as a metacognitive reinforcement learning problem. This formulation leads to a computational method for deriving optimal cognitive strategies and a feedback mechanism for accelerating the process by which people learn how to make better decisions. As a proof of concept, we apply our approach to develop an intelligent system that teaches people optimal planning stratgies. Our training program combines a novel process-tracing paradigm that makes peoples latent planning strategies observable with an intelligent system that gives people feedback on how their planning strategy could be improved. The pedagogy of our intelligent tutor is based on the theory that people discover their cognitive strategies through metacognitive reinforcement learning. Concretely, the tutor’s feedback is designed to maximally accelerate people’s metacognitive reinforcement learning towards the optimal cognitive strategy. A series of four experiments confirmed that training with the cognitive tutor significantly improved people’s decision-making competency: Experiment 1 demonstrated that the cognitive tutor’s feedback accelerates participants’ metacognitive learning. Experiment 2 found that this training effect transfers to more difficult planning problems in more complex environments. Experiment 3 found that these transfer effects are retained for at least 24 hours after the training. Finally, Experiment 4 found that practicing with the cognitive tutor conveys additional benefits above and beyond verbal description of the optimal planning strategy. The results suggest that promoting metacognitive reinforcement learning with optimal feedback is a promising approach to improving the human mind.

re

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Discovering Rational Heuristics for Risky Choice

Gul, S., Krueger, P. M., Callaway, F., Griffiths, T. L., Lieder, F.

The 14th biannual conference of the German Society for Cognitive Science, GK, The 14th biannual conference of the German Society for Cognitive Science, GK, September 2018 (conference)

Abstract
How should we think and decide to make the best possible use of our precious time and limited cognitive resources? And how do people’s cognitive strategies compare to this ideal? We study these questions in the domain of multi-alternative risky choice using the methodology of resource-rational analysis. To answer the first question, we leverage a new meta-level reinforcement learning algorithm to derive optimal heuristics for four different risky choice environments. We find that our method rediscovers two fast-and-frugal heuristics that people are known to use, namely Take-The-Best and choosing randomly, as resource-rational strategies for specific environments. Our method also discovered a novel heuristic that combines elements of Take-The-Best and Satisficing. To answer the second question, we use the Mouselab paradigm to measure how people’s decision strategies compare to the predictions of our resource-rational analysis. We found that our resource-rational analysis correctly predicted which strategies people use and under which conditions they use them. While people generally tend to make rational use of their limited resources overall, their strategy choices do not always fully exploit the structure of each decision problem. Overall, people’s decision operations were about 88% as resource-rational as they could possibly be. A formal model comparison confirmed that our resource-rational model explained people’s decision strategies significantly better than the Directed Cognition model of Gabaix et al. (2006). Our study is a proof-of-concept that optimal cognitive strategies can be automatically derived from the principle of resource-rationality. Our results suggest that resource-rational analysis is a promising approach for uncovering people’s cognitive strategies and revisiting the debate about human rationality with a more realistic normative standard.

re

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Learning to Select Computations

Callaway, F., Gul, S., Krueger, P. M., Griffiths, T. L., Lieder, F.

In Uncertainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference, August 2018, Frederick Callaway and Sayan Gul and Falk Lieder contributed equally to this publication. (inproceedings)

Abstract
The efficient use of limited computational resources is an essential ingredient of intelligence. Selecting computations optimally according to rational metareasoning would achieve this, but this is computationally intractable. Inspired by psychology and neuroscience, we propose the first concrete and domain-general learning algorithm for approximating the optimal selection of computations: Bayesian metalevel policy search (BMPS). We derive this general, sample-efficient search algorithm for a computation-selecting metalevel policy based on the insight that the value of information lies between the myopic value of information and the value of perfect information. We evaluate BMPS on three increasingly difficult metareasoning problems: when to terminate computation, how to allocate computation between competing options, and planning. Across all three domains, BMPS achieved near-optimal performance and compared favorably to previously proposed metareasoning heuristics. Finally, we demonstrate the practical utility of BMPS in an emergency management scenario, even accounting for the overhead of metareasoning.

re

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
From Deterministic ODEs to Dynamic Structural Causal Models

Rubenstein, P. K., Bongers, S., Schölkopf, B., Mooij, J. M.

Proceedings of the 34th Conference on Uncertainty in Artificial Intelligence (UAI), August 2018 (conference)

ei

Arxiv link (url) [BibTex]

Arxiv link (url) [BibTex]


no image
Generalized Score Functions for Causal Discovery

Huang, B., Zhang, K., Lin, Y., Schölkopf, B., Glymour, C.

Proceedings of the 24th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pages: 1551-1560, (Editors: Yike Guo and Faisal Farooq), ACM, August 2018 (conference)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Kernel Recursive ABC: Point Estimation with Intractable Likelihood

Kajihara, T., Kanagawa, M., Yamazaki, K., Fukumizu, K.

Proceedings of the 35th International Conference on Machine Learning, pages: 2405-2414, PMLR, July 2018 (conference)

Abstract
We propose a novel approach to parameter estimation for simulator-based statistical models with intractable likelihood. Our proposed method involves recursive application of kernel ABC and kernel herding to the same observed data. We provide a theoretical explanation regarding why the approach works, showing (for the population setting) that, under a certain assumption, point estimates obtained with this method converge to the true parameter, as recursion proceeds. We have conducted a variety of numerical experiments, including parameter estimation for a real-world pedestrian flow simulator, and show that in most cases our method outperforms existing approaches.

pn

Paper [BibTex]

Paper [BibTex]


no image
A Conditional Gradient Framework for Composite Convex Minimization with Applications to Semidefinite Programming

Yurtsever, A., Fercoq, O., Locatello, F., Cevher, V.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 5713-5722, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Blind Justice: Fairness with Encrypted Sensitive Attributes

Kilbertus, N., Gascon, A., Kusner, M., Veale, M., Gummadi, K., Weller, A.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 2635-2644, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Detecting non-causal artifacts in multivariate linear regression models

Janzing, D., Schölkopf, B.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 2250-2258, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Learning-based solution to phase error correction in T2*-weighted GRE scans

Loktyushin, A., Ehses, P., Schölkopf, B., Scheffler, K.

1st International conference on Medical Imaging with Deep Learning (MIDL), July 2018 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
The Mirage of Action-Dependent Baselines in Reinforcement Learning

Tucker, G., Bhupatiraju, S., Gu, S., Turner, R., Ghahramani, Z., Levine, S.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 5022-5031, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

ei

PDF link (url) Project Page [BibTex]

PDF link (url) Project Page [BibTex]


no image
Intrinsic disentanglement: an invariance view for deep generative models

Besserve, M., Sun, R., Schölkopf, B.

Workshop on Theoretical Foundations and Applications of Deep Generative Models at ICML, July 2018 (conference)

ei

PDF [BibTex]

PDF [BibTex]


Assessing Generative Models via Precision and Recall
Assessing Generative Models via Precision and Recall

Sajjadi, M. S. M., Bachem, O., Lucic, M., Bousquet, O., Gelly, S.

Workshop on Theoretical Foundations and Applications of Deep Generative Models (TADGM) at the 35th International Conference on Machine Learning (ICML), July 2018 (conference)

ei

arXiv [BibTex]

arXiv [BibTex]


Tempered Adversarial Networks
Tempered Adversarial Networks

Sajjadi, M. S. M., Parascandolo, G., Mehrjou, A., Schölkopf, B.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 4448-4456, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

ei

arXiv link (url) Project Page [BibTex]

arXiv link (url) Project Page [BibTex]


no image
PIPPS: Flexible Model-Based Policy Search Robust to the Curse of Chaos

Parmas, P., Rasmussen, C., Peters, J., Doya, K.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 4065-4074, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Learning Independent Causal Mechanisms

Parascandolo, G., Kilbertus, N., Rojas-Carulla, M., Schölkopf, B.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 4033-4041, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Nonstationary GANs: Analysis as Nonautonomous Dynamical Systems

Mehrjou, A., Schölkopf, B.

Workshop on Theoretical Foundations and Applications of Deep Generative Models at ICML, July 2018 (conference)

ei

PDF [BibTex]

PDF [BibTex]


no image
Differentially Private Database Release via Kernel Mean Embeddings

Balog, M., Tolstikhin, I., Schölkopf, B.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 423-431, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

ei

link (url) Project Page Project Page [BibTex]

link (url) Project Page Project Page [BibTex]


no image
On Matching Pursuit and Coordinate Descent

Locatello, F., Raj, A., Praneeth Karimireddy, S., Rätsch, G., Schölkopf, B., Stich, S. U., Jaggi, M.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 3204-3213, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Iterative Model-Fitting and Local Controller Optimization - Towards a Better Understanding of Convergence Properties

Wüthrich, M., Schölkopf, B.

Workshop on Prediction and Generative Modeling in Reinforcement Learning at ICML, July 2018 (conference)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Counterfactual Mean Embedding: A Kernel Method for Nonparametric Causal Inference

Muandet, K., Kanagawa, M., Saengkyongam, S., Marukata, S.

Workshop on Machine Learning for Causal Inference, Counterfactual Prediction, and Autonomous Action (CausalML) at ICML, July 2018 (conference)

ei pn

[BibTex]

[BibTex]


Frame-Recurrent Video Super-Resolution
Frame-Recurrent Video Super-Resolution

Sajjadi, M. S. M., Vemulapalli, R., Brown, M.

IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , June 2018 (conference)

ei

ArXiv link (url) [BibTex]

ArXiv link (url) [BibTex]


no image
Learning Face Deblurring Fast and Wide

Jin, M., Hirsch, M., Favaro, P.

The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pages: 745-753, June 2018 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]