Header logo is


2019


Life Improvement Science: A Manifesto
Life Improvement Science: A Manifesto

Lieder, F.

December 2019 (article) In revision

Abstract
Rapid technological advances present unprecedented opportunities for helping people thrive. This manifesto presents a road map for establishing a solid scientific foundation upon which those opportunities can be realized. It highlights fundamental open questions about the cognitive underpinnings of effective living and how they can be improved, supported, and augmented. These questions are at the core of my proposal for a new transdisciplinary research area called life improvement science. Recent advances have made these questions amenable to scientific rigor, and emerging approaches are paving the way towards practical strategies, clever interventions, and (intelligent) apps for empowering people to reach unprecedented levels of personal effectiveness and wellbeing.

re

Life improvement science: a manifesto DOI [BibTex]


no image
Dynamics of beneficial epidemics

Berdahl, A., Brelsford, C., De Bacco, C., Dumas, M., Ferdinand, V., Grochow, J. A., nt Hébert-Dufresne, L., Kallus, Y., Kempes, C. P., Kolchinsky, A., Larremore, D. B., Libby, E., Power, E. A., A., S. C., Tracey, B. D.

Scientific Reports, 9, pages: 15093, October 2019 (article)

pio

DOI [BibTex]

DOI [BibTex]


no image
Convolutional neural networks: A magic bullet for gravitational-wave detection?

Gebhard, T., Kilbertus, N., Harry, I., Schölkopf, B.

Physical Review D, 100(6):063015, American Physical Society, September 2019 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Data scarcity, robustness and extreme multi-label classification

Babbar, R., Schölkopf, B.

Machine Learning, 108(8):1329-1351, September 2019, Special Issue of the ECML PKDD 2019 Journal Track (article)

ei

DOI [BibTex]

DOI [BibTex]


Cognitive Prostheses for Goal Achievement
Cognitive Prostheses for Goal Achievement

Lieder, F., Chen, O. X., Krueger, P. M., Griffiths, T. L.

Nature Human Behavior, 3, August 2019 (article)

Abstract
Procrastination and impulsivity take a significant toll on people’s lives and the economy at large. Both can result from the misalignment of an action's proximal rewards with its long-term value. Therefore, aligning immediate reward with long-term value could be a way to help people overcome motivational barriers and make better decisions. Previous research has shown that game elements, such as points, levels, and badges, can be used to motivate people and nudge their decisions on serious matters. Here, we develop a new approach to decision support that leveragesartificial intelligence and game elements to restructure challenging sequential decision problems in such a way that it becomes easier for people to take the right course of action. A series of four increasingly more realistic experiments suggests that this approach can enable people to make better decisions faster, procrastinate less, complete their work on time, and waste less time on unimportant tasks. These findings suggest that our method is a promising step towards developing cognitive prostheses that help people achieve their goals by enhancing their motivation and decision-making in everyday life.

re

DOI [BibTex]

DOI [BibTex]


no image
SPINDLE: End-to-end learning from EEG/EMG to extrapolate animal sleep scoring across experimental settings, labs and species

Miladinovic, D., Muheim, C., Bauer, S., Spinnler, A., Noain, D., Bandarabadi, M., Gallusser, B., Krummenacher, G., Baumann, C., Adamantidis, A., Brown, S. A., Buhmann, J. M.

PLOS Computational Biology, 15(4):1-30, Public Library of Science, April 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Resource-rational analysis: Understanding human cognition as the optimal use of limited computational resources

Lieder, F., Griffiths, T. L.

Behavioral and Brain Sciences, 43, E1, Febuary 2019 (article)

Abstract
Modeling human cognition is challenging because there are infinitely many mechanisms that can generate any given observation. Some researchers address this by constraining the hypothesis space through assumptions about what the human mind can and cannot do, while others constrain it through principles of rationality and adaptation. Recent work in economics, psychology, neuroscience, and linguistics has begun to integrate both approaches by augmenting rational models with cognitive constraints, incorporating rational principles into cognitive architectures, and applying optimality principles to understanding neural representations. We identify the rational use of limited resources as a unifying principle underlying these diverse approaches, expressing it in a new cognitive modeling paradigm called resource-rational analysis. The integration of rational principles with realistic cognitive constraints makes resource-rational analysis a promising framework for reverse-engineering cognitive mechanisms and representations. It has already shed new light on the debate about human rationality and can be leveraged to revisit classic questions of cognitive psychology within a principled computational framework. We demonstrate that resource-rational models can reconcile the mind's most impressive cognitive skills with people's ostensive irrationality. Resource-rational analysis also provides a new way to connect psychological theory more deeply with artificial intelligence, economics, neuroscience, and linguistics.

re

DOI [BibTex]

DOI [BibTex]


no image
A 32-channel multi-coil setup optimized for human brain shimming at 9.4T

Aghaeifar, A., Zhou, J., Heule, R., Tabibian, B., Schölkopf, B., Jia, F., Zaitsev, M., Scheffler, K.

Magnetic Resonance in Medicine, 2019, (Early View) (article)

ei

DOI [BibTex]

DOI [BibTex]


Multidimensional Contrast Limited Adaptive Histogram Equalization
Multidimensional Contrast Limited Adaptive Histogram Equalization

Stimper, V., Bauer, S., Ernstorfer, R., Schölkopf, B., Xian, R. P.

IEEE Access, 7, pages: 165437-165447, 2019 (article)

ei

arXiv link (url) DOI [BibTex]

arXiv link (url) DOI [BibTex]


no image
TD-regularized actor-critic methods

Parisi, S., Tangkaratt, V., Peters, J., Khan, M. E.

Machine Learning, 108(8):1467-1501, (Editors: Karsten Borgwardt, Po-Ling Loh, Evimaria Terzi, and Antti Ukkonen), 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Probabilistic solutions to ordinary differential equations as nonlinear Bayesian filtering: a new perspective

Tronarp, F., Kersting, H., Särkkä, S. H. P.

Statistics and Computing, 29(6):1297-1315, 2019 (article)

ei pn

DOI [BibTex]

DOI [BibTex]


no image
Spatial Continuity Effect vs. Spatial Contiguity Failure. Revising the Effects of Spatial Proximity Between Related and Unrelated Representations

Beege, M., Wirzberger, M., Nebel, S., Schneider, S., Schmidt, N., Rey, G. D.

Frontiers in Education, 4:86, 2019 (article)

Abstract
The split-attention effect refers to learning with related representations in multimedia. Spatial proximity and integration of these representations are crucial for learning processes. The influence of varying amounts of proximity between related and unrelated information has not yet been specified. In two experiments (N1 = 98; N2 = 85), spatial proximity between a pictorial presentation and text labels was manipulated (high vs. medium vs. low). Additionally, in experiment 1, a control group with separated picture and text presentation was implemented. The results revealed a significant effect of spatial proximity on learning performance. In contrast to previous studies, the medium condition leads to the highest transfer, and in experiment 2, the highest retention score. These results are interpreted considering cognitive load and instructional efficiency. Findings indicate that transfer efficiency is optimal at a medium distance between representations in experiment 1. Implications regarding the spatial contiguity principle and the spatial contiguity failure are discussed.

re

link (url) DOI [BibTex]


Learning to Control Highly Accelerated Ballistic Movements on Muscular Robots
Learning to Control Highly Accelerated Ballistic Movements on Muscular Robots

Büchler, D., Calandra, R., Peters, J.

2019 (article) Submitted

Abstract
High-speed and high-acceleration movements are inherently hard to control. Applying learning to the control of such motions on anthropomorphic robot arms can improve the accuracy of the control but might damage the system. The inherent exploration of learning approaches can lead to instabilities and the robot reaching joint limits at high speeds. Having hardware that enables safe exploration of high-speed and high-acceleration movements is therefore desirable. To address this issue, we propose to use robots actuated by Pneumatic Artificial Muscles (PAMs). In this paper, we present a four degrees of freedom (DoFs) robot arm that reaches high joint angle accelerations of up to 28000 °/s^2 while avoiding dangerous joint limits thanks to the antagonistic actuation and limits on the air pressure ranges. With this robot arm, we are able to tune control parameters using Bayesian optimization directly on the hardware without additional safety considerations. The achieved tracking performance on a fast trajectory exceeds previous results on comparable PAM-driven robots. We also show that our system can be controlled well on slow trajectories with PID controllers due to careful construction considerations such as minimal bending of cables, lightweight kinematics and minimal contact between PAMs and PAMs with the links. Finally, we propose a novel technique to control the the co-contraction of antagonistic muscle pairs. Experimental results illustrate that choosing the optimal co-contraction level is vital to reach better tracking performance. Through the use of PAM-driven robots and learning, we do a small step towards the future development of robots capable of more human-like motions.

ei

Arxiv Video [BibTex]


no image
Robustifying Independent Component Analysis by Adjusting for Group-Wise Stationary Noise

Pfister*, N., Weichwald*, S., Bühlmann, P., Schölkopf, B.

Journal of Machine Learning Research, 20(147):1-50, 2019, *equal contribution (article)

ei

ArXiv Code Project page PDF link (url) Project Page Project Page [BibTex]

ArXiv Code Project page PDF link (url) Project Page Project Page [BibTex]


no image
Enhancing Human Learning via Spaced Repetition Optimization

Tabibian, B., Upadhyay, U., De, A., Zarezade, A., Schölkopf, B., Gomez Rodriguez, M.

Proceedings of the National Academy of Sciences, 116(10):3988-3993, National Academy of Sciences, 2019 (article)

ei

link (url) DOI Project Page Project Page [BibTex]

link (url) DOI Project Page Project Page [BibTex]


no image
Entropic Regularization of Markov Decision Processes

Belousov, B., Peters, J.

Entropy, 21(7):674, 2019 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Searchers adjust their eye-movement dynamics to target characteristics in natural scenes

Rothkegel, L., Schütt, H., Trukenbrod, H., Wichmann, F. A., Engbert, R.

Scientific Reports, 9(1635), 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Spatial statistics for gaze patterns in scene viewing: Effects of repeated viewing

Trukenbrod, H. A., Barthelmé, S., Wichmann, F. A., Engbert, R.

Journal of Vision, 19(6):19, 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Quantum mean embedding of probability distributions

Kübler, J. M., Muandet, K., Schölkopf, B.

Physical Review Research, 1(3):033159, American Physical Society, 2019 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Doing more with less: Meta-reasoning and meta-learning in humans and machines

Griffiths, T., Callaway, F., Chang, M., Grant, E., Krueger, P. M., Lieder, F.

Current Opinion in Behavioral Sciences, 2019 (article)

re

DOI [BibTex]

DOI [BibTex]


no image
Inferring causation from time series with perspectives in Earth system sciences

Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E., Glymour, C., Kretschmer, M., Mahecha, M., Munoz-Mari, J., van Nes, E., Peters, J., Quax, R., Reichstein, M., Scheffer, M., Schölkopf, B., Spirtes, P., Sugihara, G., Sun, J., Zhang, K., Zscheischler, J.

Nature Communications, 10(2553), 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Analysis of cause-effect inference by comparing regression errors

Blöbaum, P., Janzing, D., Washio, T., Shimizu, S., Schölkopf, B.

PeerJ Computer Science, 5, pages: e169, 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Learning Intention Aware Online Adaptation of Movement Primitives

Koert, D., Pajarinen, J., Schotschneider, A., Trick, S., Rothkopf, C., Peters, J.

IEEE Robotics and Automation Letters, 4(4):3719-3726, 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Spread-spectrum magnetic resonance imaging

Scheffler, K., Loktyushin, A., Bause, J., Aghaeifar, A., Steffen, T., Schölkopf, B.

Magnetic Resonance in Medicine, 82(3):877-885, 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
How Cognitive Models of Human Body Experience Might Push Robotics

Schürmann, T., Mohler, B. J., Peters, J., Beckerle, P.

Frontiers in Neurorobotics, 13(14), 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Dense connectomic reconstruction in layer 4 of the somatosensory cortex

Motta, A., Berning, M., Boergens, K. M., Staffler, B., Beining, M., Loomba, S., Hennig, P., Wissler, H., Helmstaedter, M.

Science, 366(6469):eaay3134, American Association for the Advancement of Science, 2019 (article)

ei pn

DOI [BibTex]

DOI [BibTex]


no image
Learning Trajectory Distributions for Assisted Teleoperation and Path Planning

Ewerton, M., Arenz, O., Maeda, G., Koert, D., Kolev, Z., Takahashi, M., Peters, J.

Frontiers in Robotics and AI, 6, pages: 89, 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Brainglance: Visualizing Group Level MRI Data at One Glance

Stelzer, J., Lacosse, E., Bause, J., Scheffler, K., Lohmann, G.

Frontiers in Neuroscience, 13(972), 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
A rational reinterpretation of dual process theories

Milli, S., Lieder, F., Griffiths, T.

2019 (article)

re

DOI [BibTex]

DOI [BibTex]


no image
Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces

Klus, S., Schuster, I., Muandet, K.

Journal of Nonlinear Science, 2019, First Online: 21 August 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Workshops of the seventh international brain-computer interface meeting: not getting lost in translation

Huggins, J. E., Guger, C., Aarnoutse, E., Allison, B., Anderson, C. W., Bedrick, S., Besio, W., Chavarriaga, R., Collinger, J. L., Do, A. H., Herff, C., Hohmann, M., Kinsella, M., Lee, K., Lotte, F., Müller-Putz, G., Nijholt, A., Pels, E., Peters, B., Putze, F., Rupp, R. S. G., Scott, S., Tangermann, M., Tubig, P., Zander, T.

Brain-Computer Interfaces, 6(3):71-101, Taylor & Francis, 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Compatible natural gradient policy search

Pajarinen, J., Thai, H. L., Akrour, R., Peters, J., Neumann, G.

Machine Learning, 108(8):1443-1466, (Editors: Karsten Borgwardt, Po-Ling Loh, Evimaria Terzi, and Antti Ukkonen), 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Learning stable and predictive structures in kinetic systems

Pfister, N., Bauer, S., Peters, J.

Proceedings of the National Academy of Sciences (PNAS), 116(51):25405-25411, 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Fairness Constraints: A Flexible Approach for Fair Classification

Zafar, M. B., Valera, I., Gomez-Rodriguez, M., Krishna, P.

Journal of Machine Learning Research, 20(75):1-42, 2019 (article)

ei

link (url) [BibTex]

link (url) [BibTex]

2014


no image
Juggling revisited — A voxel based morphometry study with expert jugglers

Gerber, P., Schlaffke, L., Heba, S., Greenlee, M., Schultz, T., Schmidt-Wilcke, T.

NeuroImage, 95, pages: 320-325, 2014 (article)

ei

Web DOI [BibTex]

2014


Web DOI [BibTex]


no image
Assessing attention and cognitive function in completely locked-in state with event-related brain potentials and epidural electrocorticography

Bensch, M., Martens, S., Halder, S., Hill, J., Nijboer, F., Ramos, A., Birbaumer, N., Bodgan, M., Kotchoubey, B., Rosenstiel, W., Schölkopf, B., Gharabaghi, A.

Journal of Neural Engineering, 11(2):026006, 2014 (article)

Abstract
Objective. Patients in the completely locked-in state (CLIS), due to, for example, amyotrophic lateral sclerosis (ALS), no longer possess voluntary muscle control. Assessing attention and cognitive function in these patients during the course of the disease is a challenging but essential task for both nursing staff and physicians. Approach. An electrophysiological cognition test battery, including auditory and semantic stimuli, was applied in a late-stage ALS patient at four different time points during a six-month epidural electrocorticography (ECoG) recording period. Event-related cortical potentials (ERP), together with changes in the ECoG signal spectrum, were recorded via 128 channels that partially covered the left frontal, temporal and parietal cortex. Main results. Auditory but not semantic stimuli induced significant and reproducible ERP projecting to specific temporal and parietal cortical areas. N1/P2 responses could be detected throughout the whole study period. The highest P3 ERP was measured immediately after the patient's last communication through voluntary muscle control, which was paralleled by low theta and high gamma spectral power. Three months after the patient's last communication, i.e., in the CLIS, P3 responses could no longer be detected. At the same time, increased activity in low-frequency bands and a sharp drop of gamma spectral power were recorded. Significance. Cortical electrophysiological measures indicate at least partially intact attention and cognitive function during sparse volitional motor control for communication. Although the P3 ERP and frequency-specific changes in the ECoG spectrum may serve as indicators for CLIS, a close-meshed monitoring will be required to define the exact time point of the transition.

ei

DOI [BibTex]

DOI [BibTex]


no image
Identifiability of Gaussian Structural Equation Models with Equal Error Variances

Peters, J., Bühlman, P.

Biometrika, 101(1):219-228, 2014 (article)

ei

DOI [BibTex]


no image
Quantifying the effect of intertrial dependence on perceptual decisions

Fründ, I., Wichmann, F., Macke, J.

Journal of Vision, 14(7):1-16, 2014 (article)

ei

Web PDF link (url) DOI [BibTex]

Web PDF link (url) DOI [BibTex]


no image
Two numerical models designed to reproduce Saturn ring temperatures as measured by Cassini-CIRS

Altobelli, N., Lopez-Paz, D., Pilorz, S., Spilker, L., Morishima, R., Brooks, S., Leyrat, C., Deau, E., Edgington, S., Flandes, A.

Icarus, 238(0):205 - 220, 2014 (article)

ei

Web link (url) DOI [BibTex]

Web link (url) DOI [BibTex]


no image
Policy Evaluation with Temporal Differences: A Survey and Comparison

Dann, C., Neumann, G., Peters, J.

Journal of Machine Learning Research, 15, pages: 809-883, 2014 (article)

ei

PDF [BibTex]

PDF [BibTex]


no image
Uncovering the Structure and Temporal Dynamics of Information Propagation

Gomez Rodriguez, M., Leskovec, J., Balduzzi, D., Schölkopf, B.

Network Science, 2(1):26-65, 2014 (article)

Abstract
Time plays an essential role in the diffusion of information, influence, and disease over networks. In many cases we can only observe when a node is activated by a contagion—when a node learns about a piece of information, makes a decision, adopts a new behavior, or becomes infected with a disease. However, the underlying network connectivity and transmission rates between nodes are unknown. Inferring the underlying diffusion dynamics is important because it leads to new insights and enables forecasting, as well as influencing or containing information propagation. In this paper we model diffusion as a continuous temporal process occurring at different rates over a latent, unobserved network that may change over time. Given information diffusion data, we infer the edges and dynamics of the underlying network. Our model naturally imposes sparse solutions and requires no parameter tuning. We develop an efficient inference algorithm that uses stochastic convex optimization to compute online estimates of the edges and transmission rates. We evaluate our method by tracking information diffusion among 3.3 million mainstream media sites and blogs, and experiment with more than 179 million different instances of information spreading over the network in a one-year period. We apply our network inference algorithm to the top 5,000 media sites and blogs and report several interesting observations. First, information pathways for general recurrent topics are more stable across time than for on-going news events. Second, clusters of news media sites and blogs often emerge and vanish in a matter of days for on-going news events. Finally, major events, for example, large scale civil unrest as in the Libyan civil war or Syrian uprising, increase the number of information pathways among blogs, and also increase the network centrality of blogs and social media sites.

ei

DOI [BibTex]


no image
Causal discovery via reproducing kernel Hilbert space embeddings

Chen, Z., Zhang, K., Chan, L., Schölkopf, B.

Neural Computation, 26(7):1484-1517, 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Impact of Large-Scale Climate Extremes on Biospheric Carbon Fluxes: An Intercomparison Based on MsTMIP Data

Zscheischler, J., Michalak, A., Schwalm, M., Mahecha, M., Huntzinger, D., Reichstein, M., Berthier, G., Ciais, P., Cook, R., El-Masri, B., Huang, M., Ito, A., Jain, A., King, A., Lei, H., Lu, C., Mao, J., Peng, S., Poulter, B., Ricciuto, D., Shi, X., Tao, B., Tian, H., Viovy, N., Wang, W., Wei, Y., Yang, J., Zeng, N.

Global Biogeochemical Cycles, 2014 (article)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
A Brain-Computer Interface Based on Self-Regulation of Gamma-Oscillations in the Superior Parietal Cortex

Grosse-Wentrup, M., Schölkopf, B.

Journal of Neural Engineering, 11(5):056015, 2014 (article)

Abstract
Objective. Brain–computer interface (BCI) systems are often based on motor- and/or sensory processes that are known to be impaired in late stages of amyotrophic lateral sclerosis (ALS). We propose a novel BCI designed for patients in late stages of ALS that only requires high-level cognitive processes to transmit information from the user to the BCI. Approach. We trained subjects via EEG-based neurofeedback to self-regulate the amplitude of gamma-oscillations in the superior parietal cortex (SPC). We argue that parietal gamma-oscillations are likely to be associated with high-level attentional processes, thereby providing a communication channel that does not rely on the integrity of sensory- and/or motor-pathways impaired in late stages of ALS. Main results. Healthy subjects quickly learned to self-regulate gamma-power in the SPC by alternating between states of focused attention and relaxed wakefulness, resulting in an average decoding accuracy of 70.2%. One locked-in ALS patient (ALS-FRS-R score of zero) achieved an average decoding accuracy significantly above chance-level though insufficient for communication (55.8%). Significance. Self-regulation of gamma-power in the SPC is a feasible paradigm for brain–computer interfacing and may be preserved in late stages of ALS. This provides a novel approach to testing whether completely locked-in ALS patients retain the capacity for goal-directed thinking.

ei

Web DOI [BibTex]


no image
CAM: Causal Additive Models, high-dimensional order search and penalized regression

Bühlmann, P., Peters, J., Ernest, J.

Annals of Statistics, 42(6):2526-2556, 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Predicting Motor Learning Performance from Electroencephalographic Data

Meyer, T., Peters, J., Zander, T., Schölkopf, B., Grosse-Wentrup, M.

Journal of NeuroEngineering and Rehabilitation, 11:24, 2014 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Special issue on autonomous grasping and manipulation

Ben Amor, H., Saxena, A., Hudson, N., Peters, J.

Autonomous Robots, 36(1-2):1-3, 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]