Header logo is


2019


no image
Semi-supervised learning, causality, and the conditional cluster assumption

von Kügelgen, J., Mey, A., Loog, M., Schölkopf, B.

NeurIPS 2019 Workshop “Do the right thing”: machine learning and causal inference for improved decision making, December 2019 (poster) Accepted

ei

link (url) [BibTex]

2019


link (url) [BibTex]


no image
Optimal experimental design via Bayesian optimization: active causal structure learning for Gaussian process networks

von Kügelgen, J., Rubenstein, P., Schölkopf, B., Weller, A.

NeurIPS 2019 Workshop “Do the right thing”: machine learning and causal inference for improved decision making, December 2019 (poster) Accepted

ei

link (url) [BibTex]

link (url) [BibTex]


Thumb xl mode changes long exp
Fast Feedback Control over Multi-hop Wireless Networks with Mode Changes and Stability Guarantees

Baumann, D., Mager, F., Jacob, R., Thiele, L., Zimmerling, M., Trimpe, S.

ACM Transactions on Cyber-Physical Systems, 4(2):18, November 2019 (article)

ics

arXiv PDF DOI [BibTex]

arXiv PDF DOI [BibTex]


no image
Convolutional neural networks: A magic bullet for gravitational-wave detection?

Gebhard, T., Kilbertus, N., Harry, I., Schölkopf, B.

Physical Review D, 100(6):063015, American Physical Society, September 2019 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Data scarcity, robustness and extreme multi-label classification

Babbar, R., Schölkopf, B.

Machine Learning, 108(8):1329-1351, September 2019, Special Issue of the ECML PKDD 2019 Journal Track (article)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl trimpe2019resource image
Resource-aware IoT Control: Saving Communication through Predictive Triggering

Trimpe, S., Baumann, D.

IEEE Internet of Things Journal, 6(3):5013-5028, June 2019 (article)

Abstract
The Internet of Things (IoT) interconnects multiple physical devices in large-scale networks. When the 'things' coordinate decisions and act collectively on shared information, feedback is introduced between them. Multiple feedback loops are thus closed over a shared, general-purpose network. Traditional feedback control is unsuitable for design of IoT control because it relies on high-rate periodic communication and is ignorant of the shared network resource. Therefore, recent event-based estimation methods are applied herein for resource-aware IoT control allowing agents to decide online whether communication with other agents is needed, or not. While this can reduce network traffic significantly, a severe limitation of typical event-based approaches is the need for instantaneous triggering decisions that leave no time to reallocate freed resources (e.g., communication slots), which hence remain unused. To address this problem, novel predictive and self triggering protocols are proposed herein. From a unified Bayesian decision framework, two schemes are developed: self triggers that predict, at the current triggering instant, the next one; and predictive triggers that check at every time step, whether communication will be needed at a given prediction horizon. The suitability of these triggers for feedback control is demonstrated in hardware experiments on a cart-pole, and scalability is discussed with a multi-vehicle simulation.

ics

PDF arXiv DOI [BibTex]

PDF arXiv DOI [BibTex]


no image
Demo Abstract: Fast Feedback Control and Coordination with Mode Changes for Wireless Cyber-Physical Systems

(Best Demo Award)

Mager, F., Baumann, D., Jacob, R., Thiele, L., Trimpe, S., Zimmerling, M.

Proceedings of the 18th ACM/IEEE Conference on Information Processing in Sensor Networks (IPSN), pages: 340-341, 18th ACM/IEEE Conference on Information Processing in Sensor Networks (IPSN), April 2019 (poster)

ics

arXiv PDF DOI [BibTex]

arXiv PDF DOI [BibTex]


Thumb xl journal iav
Data-efficient Auto-tuning with Bayesian Optimization: An Industrial Control Study

Neumann-Brosig, M., Marco, A., Schwarzmann, D., Trimpe, S.

IEEE Transactions on Control Systems Technology, 2019 (article) Accepted

Abstract
Bayesian optimization is proposed for automatic learning of optimal controller parameters from experimental data. A probabilistic description (a Gaussian process) is used to model the unknown function from controller parameters to a user-defined cost. The probabilistic model is updated with data, which is obtained by testing a set of parameters on the physical system and evaluating the cost. In order to learn fast, the Bayesian optimization algorithm selects the next parameters to evaluate in a systematic way, for example, by maximizing information gain about the optimum. The algorithm thus iteratively finds the globally optimal parameters with only few experiments. Taking throttle valve control as a representative industrial control example, the proposed auto-tuning method is shown to outperform manual calibration: it consistently achieves better performance with a low number of experiments. The proposed auto-tuning framework is flexible and can handle different control structures and objectives.

ics

arXiv (PDF) DOI Project Page [BibTex]

arXiv (PDF) DOI Project Page [BibTex]


no image
X-ray Optics Fabrication Using Unorthodox Approaches

Sanli, U., Baluktsian, M., Ceylan, H., Sitti, M., Weigand, M., Schütz, G., Keskinbora, K.

Bulletin of the American Physical Society, APS, 2019 (article)

mms pi

[BibTex]

[BibTex]


no image
A 32-channel multi-coil setup optimized for human brain shimming at 9.4T

Aghaeifar, A., Zhou, J., Heule, R., Tabibian, B., Schölkopf, B., Jia, F., Zaitsev, M., Scheffler, K.

Magnetic Resonance in Medicine, 2019, (Early View) (article)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl as20205.f2
Microrobotics and Microorganisms: Biohybrid Autonomous Cellular Robots

Alapan, Y., Yasa, O., Yigit, B., Yasa, I. C., Erkoc, P., Sitti, M.

Annual Review of Control, Robotics, and Autonomous Systems, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl woodw1 2892811 large
Tailored Magnetic Springs for Shape-Memory Alloy Actuated Mechanisms in Miniature Robots

Woodward, M. A., Sitti, M.

IEEE Transactions on Robotics, 35, 2019 (article)

Abstract
Animals can incorporate large numbers of actuators because of the characteristics of muscles; whereas, robots cannot, as typical motors tend to be large, heavy, and inefficient. However, shape-memory alloys (SMA), materials that contract during heating because of change in their crystal structure, provide another option. SMA, though, is unidirectional and therefore requires an additional force to reset (extend) the actuator, which is typically provided by springs or antagonistic actuation. These strategies, however, tend to limit the actuator's work output and functionality as their force-displacement relationships typically produce increasing resistive force with limited variability. In contrast, magnetic springs-composed of permanent magnets, where the interaction force between magnets mimics a spring force-have much more variable force-displacement relationships and scale well with SMA. However, as of yet, no method for designing magnetic springs for SMA-actuators has been demonstrated. Therefore, in this paper, we present a new methodology to tailor magnetic springs to the characteristics of these actuators, with experimental results both for the device and robot-integrated SMA-actuators. We found magnetic building blocks, based on sets of permanent magnets, which are well-suited to SMAs and have the potential to incorporate features such as holding force, state transitioning, friction minimization, auto-alignment, and self-mounting. We show magnetic springs that vary by more than 3 N in 750 $\mu$m and two SMA-actuated devices that allow the MultiMo-Bat to reach heights of up to 4.5 m without, and 3.6 m with, integrated gliding airfoils. Our results demonstrate the potential of this methodology to add previously impossible functionality to smart material actuators. We anticipate this methodology will inspire broader consideration of the use of magnetic springs in miniature robots and further study of the potential of tailored magnetic springs throughout mechanical systems.

pi

DOI [BibTex]


Thumb xl figure1
Magnetically Actuated Soft Capsule Endoscope for Fine-Needle Biopsy

Son, D., Gilbert, H., Sitti, M.

Soft robotics, Mary Ann Liebert, Inc., publishers 140 Huguenot Street, 3rd Floor New …, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl smll201900472 fig 0001 m
Thrust and Hydrodynamic Efficiency of the Bundled Flagella

Danis, U., Rasooli, R., Chen, C., Dur, O., Sitti, M., Pekkan, K.

Micromachines, 10, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl fig multidimensional contrast limited adaptive histogram equalization kb
Multidimensional Contrast Limited Adaptive Histogram Equalization

Stimper, V., Bauer, S., Ernstorfer, R., Schölkopf, B., Xian, R. P.

IEEE Access, 7, pages: 165437-165447, 2019 (article)

ei

arXiv link (url) DOI [BibTex]

arXiv link (url) DOI [BibTex]


no image
Enhancing Human Learning via Spaced Repetition Optimization

Tabibian, B., Upadhyay, U., De, A., Zarezade, A., Schölkopf, B., Gomez Rodriguez, M.

Proceedings of the National Academy of Sciences, 2019, PNAS published ahead of print January 22, 2019 (article)

ei

DOI Project Page Project Page [BibTex]

DOI Project Page Project Page [BibTex]


Thumb xl screenshot 2019 03 25 at 14.29.22
Learning to Control Highly Accelerated Ballistic Movements on Muscular Robots

Büchler, D., Calandra, R., Peters, J.

2019 (article) Submitted

Abstract
High-speed and high-acceleration movements are inherently hard to control. Applying learning to the control of such motions on anthropomorphic robot arms can improve the accuracy of the control but might damage the system. The inherent exploration of learning approaches can lead to instabilities and the robot reaching joint limits at high speeds. Having hardware that enables safe exploration of high-speed and high-acceleration movements is therefore desirable. To address this issue, we propose to use robots actuated by Pneumatic Artificial Muscles (PAMs). In this paper, we present a four degrees of freedom (DoFs) robot arm that reaches high joint angle accelerations of up to 28000 °/s^2 while avoiding dangerous joint limits thanks to the antagonistic actuation and limits on the air pressure ranges. With this robot arm, we are able to tune control parameters using Bayesian optimization directly on the hardware without additional safety considerations. The achieved tracking performance on a fast trajectory exceeds previous results on comparable PAM-driven robots. We also show that our system can be controlled well on slow trajectories with PID controllers due to careful construction considerations such as minimal bending of cables, lightweight kinematics and minimal contact between PAMs and PAMs with the links. Finally, we propose a novel technique to control the the co-contraction of antagonistic muscle pairs. Experimental results illustrate that choosing the optimal co-contraction level is vital to reach better tracking performance. Through the use of PAM-driven robots and learning, we do a small step towards the future development of robots capable of more human-like motions.

ei

Arxiv Video [BibTex]


no image
Perception of temporal dependencies in autoregressive motion

Meding, K., Schölkopf, B., Wichmann, F. A.

European Conference on Visual Perception (ECVP), 2019 (poster)

ei

[BibTex]

[BibTex]


Thumb xl c8sm02215a f1 hi res
The near and far of a pair of magnetic capillary disks

Koens, L., Wang, W., Sitti, M., Lauga, E.

Soft Matter, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl smll201900472 fig 0001 m
Multifarious Transit Gates for Programmable Delivery of Bio‐functionalized Matters

Hu, X., Torati, S. R., Kim, H., Yoon, J., Lim, B., Kim, K., Sitti, M., Kim, C.

Small, Wiley Online Library, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl capture
Multi-functional soft-bodied jellyfish-like swimming

Ren, Z., Hu, W., Dong, X., Sitti, M.

Nature communications, 10, 2019 (article)

pi

[BibTex]


no image
Welcome to Progress in Biomedical Engineering

Sitti, M.

Progress in Biomedical Engineering, 1, IOP Publishing, 2019 (article)

pi

[BibTex]

[BibTex]


no image
Inferring causation from time series with perspectives in Earth system sciences

Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E., Glymour, C., Kretschmer, M., Mahecha, M., van Nes, E., Peters, J., Quax, R., Reichstein, M., Scheffer, M. S. B., Spirtes, P., Sugihara, G., Sun, J., Zhang, K., Zscheischler, J.

Nature Communications, 2019 (article) In revision

ei

[BibTex]

[BibTex]


Thumb xl smll201900472 fig 0001 m
Mechanics of a pressure-controlled adhesive membrane for soft robotic gripping on curved surfaces

Song, S., Drotlef, D., Paik, J., Majidi, C., Sitti, M.

Extreme Mechanics Letters, Elsevier, 2019 (article)

pi

[BibTex]


Thumb xl mt 2018 00757w 0007
Graphene oxide synergistically enhances antibiotic efficacy in Vancomycin resistance Staphylococcus aureus

Singh, V., Kumar, V., Kashyap, S., Singh, A. V., Kishore, V., Sitti, M., Saxena, P. S., Srivastava, A.

ACS Applied Bio Materials, ACS Publications, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl itxm a 1566425 f0001 c
Review of emerging concepts in nanotoxicology: opportunities and challenges for safer nanomaterial design

Singh, A. V., Laux, P., Luch, A., Sudrik, C., Wiehr, S., Wild, A., Santamauro, G., Bill, J., Sitti, M.

Toxicology Mechanisms and Methods, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl capture
Multifunctional and biodegradable self-propelled protein motors

Pena-Francesch, A., Giltinan, J., Sitti, M.

Nature communications, 10, Nature Publishing Group, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl capture
Cohesive self-organization of mobile microrobotic swarms

Yigit, B., Alapan, Y., Sitti, M.

arXiv preprint arXiv:1907.05856, 2019 (article)

pi

[BibTex]

[BibTex]


no image
Quantum mean embedding of probability distributions

Kübler, J. M., Muandet, K., Schölkopf, B.

Physical Review Research, 1(3):033159, American Physical Society, 2019 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Phenomenal Causality and Sensory Realism

Bruijns, S. A., Meding, K., Schölkopf, B., Wichmann, F. A.

European Conference on Visual Perception (ECVP), 2019 (poster)

ei

[BibTex]

[BibTex]


Thumb xl adtp201800064 fig 0004 m
Mobile microrobots for active therapeutic delivery

Erkoc, P., Yasa, I. C., Ceylan, H., Yasa, O., Alapan, Y., Sitti, M.

Advanced Therapeutics, Wiley Online Library, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl smll201900472 fig 0001 m
Shape-encoded dynamic assembly of mobile micromachines

Alapan, Y., Yigit, B., Beker, O., Demirörs, A. F., Sitti, M.

Nature, 18, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl adom201801313 fig 0001 m
Microfluidics Integrated Lithography‐Free Nanophotonic Biosensor for the Detection of Small Molecules

Sreekanth, K. V., Sreejith, S., Alapan, Y., Sitti, M., Lim, C. T., Singh, R.

Advanced Optical Materials, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl 201904010817153241
ENGINEERING Bio-inspired robotic collectives

Sitti, M.

Nature, 567, pages: 314-315, Macmillan Publishers Ltd., London, England, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl capture
Peptide-Induced Biomineralization of Tin Oxide (SnO2) Nanoparticles for Antibacterial Applications

Singh, A. V., Jahnke, T., Xiao, Y., Wang, S., Yu, Y., David, H., Richter, G., Laux, P., Luch, A., Srivastava, A., Saxena, P. S., Bill, J., Sitti, M.

Journal of nanoscience and nanotechnology, 19, American Scientific Publishers, 2019 (article)

pi

[BibTex]

[BibTex]


no image
Electromechanical actuation of dielectric liquid crystal elastomers for soft robotics

Davidson, Z., Shahsavan, H., Guo, Y., Hines, L., Xia, Y., Yang, S., Sitti, M.

Bulletin of the American Physical Society, APS, 2019 (article)

pi

[BibTex]

[BibTex]