Header logo is


2018


no image
Reducing 3D Vibrations to 1D in Real Time

Park, G., Kuchenbecker, K. J.

pages: 21-24, Hands-on demonstration (4 pages) presented at AsiaHaptics, Incheon, South Korea, November 2018 (misc)

Abstract
For simple and realistic vibrotactile feedback, 3D accelerations from real contact interactions are usually rendered using a single-axis vibration actuator; this dimensional reduction can be performed in many ways. This demonstration implements a real-time conversion system that simultaneously measures 3D accelerations and renders corresponding 1D vibrations using a two-pen interface. In the demonstration, a user freely interacts with various objects using an In-Pen that contains a 3-axis accelerometer. The captured accelerations are converted to a single-axis signal, and an Out-Pen renders the reduced signal for the user to feel. We prepared seven conversion methods from the simple use of a single-axis signal to applying principal component analysis (PCA) so that users can compare the performance of each conversion method in this demonstration.

hi

DOI Project Page [BibTex]

2018


DOI Project Page [BibTex]


A Large-Scale Fabric-Based Tactile Sensor Using Electrical Resistance Tomography
A Large-Scale Fabric-Based Tactile Sensor Using Electrical Resistance Tomography

Lee, H., Park, K., Kim, J., Kuchenbecker, K. J.

pages: 107-109, Hands-on demonstration (3 pages) presented at AsiaHaptics, Incheon, South Korea, November 2018 (misc)

Abstract
Large-scale tactile sensing is important for household robots and human-robot interaction because contacts can occur all over a robot’s body surface. This paper presents a new fabric-based tactile sensor that is straightforward to manufacture and can cover a large area. The tactile sensor is made of conductive and non-conductive fabric layers, and the electrodes are stitched with conductive thread, so the resulting device is flexible and stretchable. The sensor utilizes internal array electrodes and a reconstruction method called electrical resistance tomography (ERT) to achieve a high spatial resolution with a small number of electrodes. The developed sensor shows that only 16 electrodes can accurately estimate single and multiple contacts over a square that measures 20 cm by 20 cm.

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Statistical Modelling of Fingertip Deformations and Contact Forces during Tactile Interaction
Statistical Modelling of Fingertip Deformations and Contact Forces during Tactile Interaction

Gueorguiev, D., Tzionas, D., Pacchierotti, C., Black, M. J., Kuchenbecker, K. J.

Extended abstract presented at the Hand, Brain and Technology conference (HBT), Ascona, Switzerland, August 2018 (misc)

Abstract
Little is known about the shape and properties of the human finger during haptic interaction, even though these are essential parameters for controlling wearable finger devices and deliver realistic tactile feedback. This study explores a framework for four-dimensional scanning (3D over time) and modelling of finger-surface interactions, aiming to capture the motion and deformations of the entire finger with high resolution while simultaneously recording the interfacial forces at the contact. Preliminary results show that when the fingertip is actively pressing a rigid surface, it undergoes lateral expansion and proximal/distal bending, deformations that cannot be captured by imaging of the contact area alone. Therefore, we are currently capturing a dataset that will enable us to create a statistical model of the finger’s deformations and predict the contact forces induced by tactile interaction with objects. This technique could improve current methods for tactile rendering in wearable haptic devices, which rely on general physical modelling of the skin’s compliance, by developing an accurate model of the variations in finger properties across the human population. The availability of such a model will also enable a more realistic simulation of virtual finger behaviour in virtual reality (VR) environments, as well as the ability to accurately model a specific user’s finger from lower resolution data. It may also be relevant for inferring the physical properties of the underlying tissue from observing the surface mesh deformations, as previously shown for body tissues.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Reducing 3D Vibrations to 1D in Real Time

Park, G., Kuchenbecker, K. J.

Hands-on demonstration presented at EuroHaptics, Pisa, Italy, June 2018 (misc)

Abstract
In this demonstration, you will hold two pen-shaped modules: an in-pen and an out-pen. The in-pen is instrumented with a high-bandwidth three-axis accelerometer, and the out-pen contains a one-axis voice coil actuator. Use the in-pen to interact with different surfaces; the measured 3D accelerations are continually converted into 1D vibrations and rendered with the out-pen for you to feel. You can test conversion methods that range from simply selecting a single axis to applying a discrete Fourier transform or principal component analysis for realistic and brisk real-time conversion.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Haptipedia: Exploring Haptic Device Design Through Interactive Visualizations

Seifi, H., Fazlollahi, F., Park, G., Kuchenbecker, K. J., MacLean, K. E.

Hands-on demonstration presented at EuroHaptics, Pisa, Italy, June 2018 (misc)

Abstract
How many haptic devices have been proposed in the last 30 years? How can we leverage this rich source of design knowledge to inspire future innovations? Our goal is to make historical haptic invention accessible through interactive visualization of a comprehensive library – a Haptipedia – of devices that have been annotated with designer-relevant metadata. In this demonstration, participants can explore Haptipedia’s growing library of grounded force feedback devices through several prototype visualizations, interact with 3D simulations of the device mechanisms and movements, and tell us about the attributes and devices that could make Haptipedia a useful resource for the haptic design community.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Delivering 6-DOF Fingertip Tactile Cues

Young, E., Kuchenbecker, K. J.

Work-in-progress paper (5 pages) presented at EuroHaptics, Pisa, Italy, June 2018 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


Designing a Haptic Empathetic Robot Animal for Children with Autism
Designing a Haptic Empathetic Robot Animal for Children with Autism

Burns, R., Kuchenbecker, K. J.

Workshop paper (4 pages) presented at the Robotics: Science and Systems Workshop on Robot-Mediated Autism Intervention: Hardware, Software and Curriculum, Pittsburgh, USA, June 2018 (misc)

Abstract
Children with autism often endure sensory overload, may be nonverbal, and have difficulty understanding and relaying emotions. These experiences result in heightened stress during social interaction. Animal-assisted intervention has been found to improve the behavior of children with autism during social interaction, but live animal companions are not always feasible. We are thus in the process of designing a robotic animal to mimic some successful characteristics of animal-assisted intervention while trying to improve on others. The over-arching hypothesis of this research is that an appropriately designed robot animal can reduce stress in children with autism and empower them to engage in social interaction.

hi

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Soft Multi-Axis Boundary-Electrode Tactile Sensors for Whole-Body Robotic Skin

Lee, H., Kim, J., Kuchenbecker, K. J.

Workshop paper (2 pages) presented at the RSS Pioneers Workshop, Pittsburgh, USA, June 2018 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Haptics and Haptic Interfaces

Kuchenbecker, K. J.

In Encyclopedia of Robotics, (Editors: Marcelo H. Ang and Oussama Khatib and Bruno Siciliano), Springer, May 2018 (incollection)

Abstract
Haptics is an interdisciplinary field that seeks to both understand and engineer touch-based interaction. Although a wide range of systems and applications are being investigated, haptics researchers often concentrate on perception and manipulation through the human hand. A haptic interface is a mechatronic system that modulates the physical interaction between a human and his or her tangible surroundings. Haptic interfaces typically involve mechanical, electrical, and computational layers that work together to sense user motions or forces, quickly process these inputs with other information, and physically respond by actuating elements of the user’s surroundings, thereby enabling him or her to act on and feel a remote and/or virtual environment.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Arm-Worn Tactile Displays

Kuchenbecker, K. J.

Cross-Cutting Challenge Interactive Discussion presented at the IEEE Haptics Symposium, San Francisco, USA, March 2018 (misc)

Abstract
Fingertips and hands captivate the attention of most haptic interface designers, but humans can feel touch stimuli across the entire body surface. Trying to create devices that both can be worn and can deliver good haptic sensations raises challenges that rarely arise in other contexts. Most notably, tactile cues such as vibration, tapping, and squeezing are far simpler to implement in wearable systems than kinesthetic haptic feedback. This interactive discussion will present a variety of relevant projects to which I have contributed, attempting to pull out common themes and ideas for the future.

hi

[BibTex]

[BibTex]


Haptipedia: An Expert-Sourced Interactive Device Visualization for Haptic Designers
Haptipedia: An Expert-Sourced Interactive Device Visualization for Haptic Designers

Seifi, H., MacLean, K. E., Kuchenbecker, K. J., Park, G.

Work-in-progress paper (3 pages) presented at the IEEE Haptics Symposium, San Francisco, USA, March 2018 (misc)

Abstract
Much of three decades of haptic device invention is effectively lost to today’s designers: dispersion across time, region, and discipline imposes an incalculable drag on innovation in this field. Our goal is to make historical haptic invention accessible through interactive navigation of a comprehensive library – a Haptipedia – of devices that have been annotated with designer-relevant metadata. To build this open resource, we will systematically mine the literature and engage the haptics community for expert annotation. In a multi-year broad-based initiative, we will empirically derive salient attributes of haptic devices, design an interactive visualization tool where device creators and repurposers can efficiently explore and search Haptipedia, and establish methods and tools to manually and algorithmically collect data from the haptics literature and our community of experts. This paper outlines progress in compiling an initial corpus of grounded force-feedback devices and their attributes, and it presents a concept sketch of the interface we envision.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Exercising with Baxter: Design and Evaluation of Assistive Social-Physical Human-Robot Interaction

Fitter, N. T., Mohan, M., Kuchenbecker, K. J., Johnson, M. J.

Workshop paper (6 pages) presented at the HRI Workshop on Personal Robots for Exercising and Coaching, Chicago, USA, March 2018 (misc)

Abstract
The worldwide population of older adults is steadily increasing and will soon exceed the capacity of assisted living facilities. Accordingly, we aim to understand whether appropriately designed robots could help older adults stay active and engaged while living at home. We developed eight human-robot exercise games for the Baxter Research Robot with the guidance of experts in game design, therapy, and rehabilitation. After extensive iteration, these games were employed in a user study that tested their viability with 20 younger and 20 older adult users. All participants were willing to enter Baxter’s workspace and physically interact with the robot. User trust and confidence in Baxter increased significantly between pre- and post-experiment assessments, and one individual from the target user population supplied us with abundant positive feedback about her experience. The preliminary results presented in this paper indicate potential for the use of two-armed human-scale robots for social-physical exercise interaction.

hi

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Defining Social Robot Roles in Rehabilitation Based on Observed Patient-Therapist Interactions in Stroke Therapy

Johnson, M., Mohan, M., Mendonca, R.

Workshop paper (2 pages) presented at the HRI Workshop on Social Robots in Therapy: Focusing on Autonomy and Ethical Challenges, Chicago, USA, March 2018 (misc)

Abstract
In this paper, we discuss how to improve robot-patient interactions in task-oriented stroke therapy, which currently do not accurately model therapist-patient interactions in the real world. From observations of patient-therapist interactions in task-oriented stroke therapy captured in 8 videos, we describe three dyads of interactions where the therapist and the patient take on a set of acting states or roles and are motivated to move from one role to another when certain physical or verbal stimuli or cues are sensed and received. We propose possible model for robot-patient interaction and discuss challenges to its implementation, including the ethics

hi

link (url) [BibTex]

link (url) [BibTex]


Emotionally Supporting Humans Through Robot Hugs
Emotionally Supporting Humans Through Robot Hugs

Block, A. E., Kuchenbecker, K. J.

Workshop paper (2 pages) presented at the HRI Pioneers Workshop, Chicago, USA, March 2018 (misc)

Abstract
Hugs are one of the first forms of contact and affection humans experience. Due to their prevalence and health benefits, we want to enable robots to safely hug humans. This research strives to create and study a high fidelity robotic system that provides emotional support to people through hugs. This paper outlines our previous work evaluating human responses to a prototype’s physical and behavioral characteristics, and then it lays out our ongoing and future work.

hi

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Towards a Statistical Model of Fingertip Contact Deformations from 4{D} Data
Towards a Statistical Model of Fingertip Contact Deformations from 4D Data

Gueorguiev, D., Tzionas, D., Pacchierotti, C., Black, M. J., Kuchenbecker, K. J.

Work-in-progress paper (3 pages) presented at the IEEE Haptics Symposium, San Francisco, USA, March 2018 (misc)

Abstract
Little is known about the shape and properties of the human finger during haptic interaction even though this knowledge is essential to control wearable finger devices and deliver realistic tactile feedback. This study explores a framework for four-dimensional scanning and modeling of finger-surface interactions, aiming to capture the motion and deformations of the entire finger with high resolution. The results show that when the fingertip is actively pressing a rigid surface, it undergoes lateral expansion of about 0.2 cm and proximal/distal bending of about 30◦, deformations that cannot be captured by imaging of the contact area alone. This project constitutes a first step towards an accurate statistical model of the finger’s behavior during haptic interaction.

hi

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Can Humans Infer Haptic Surface Properties from Images?

Burka, A., Kuchenbecker, K. J.

Work-in-progress paper (3 pages) presented at the IEEE Haptics Symposium, San Francisco, USA, March 2018 (misc)

Abstract
Human children typically experience their surroundings both visually and haptically, providing ample opportunities to learn rich cross-sensory associations. To thrive in human environments and interact with the real world, robots also need to build models of these cross-sensory associations; current advances in machine learning should make it possible to infer models from large amounts of data. We previously built a visuo-haptic sensing device, the Proton Pack, and are using it to collect a large database of matched multimodal data from tool-surface interactions. As a benchmark to compare with machine learning performance, we conducted a human subject study (n = 84) on estimating haptic surface properties (here: hardness, roughness, friction, and warmness) from images. Using a 100-surface subset of our database, we showed images to study participants and collected 5635 ratings of the four haptic properties, which we compared with ratings made by the Proton Pack operator and with physical data recorded using motion, force, and vibration sensors. Preliminary results indicate weak correlation between participant and operator ratings, but potential for matching up certain human ratings (particularly hardness and roughness) with features from the literature.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Die kybernetische Revolution

Schölkopf, B.

15-Mar-2018, Süddeutsche Zeitung, 2018 (misc)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Maschinelles Lernen: Entwicklung ohne Grenzen?

Schökopf, B.

In Mit Optimismus in die Zukunft schauen. Künstliche Intelligenz - Chancen und Rahmenbedingungen, pages: 26-34, (Editors: Bender, G. and Herbrich, R. and Siebenhaar, K.), B&S Siebenhaar Verlag, 2018 (incollection)

ei

[BibTex]

[BibTex]


no image
Methods in Psychophysics

Wichmann, F. A., Jäkel, F.

In Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience, 5 (Methodology), 7, 4th, John Wiley & Sons, Inc., 2018 (inbook)

ei

[BibTex]

[BibTex]


no image
Transfer Learning for BCIs

Jayaram, V., Fiebig, K., Peters, J., Grosse-Wentrup, M.

In Brain–Computer Interfaces Handbook, pages: 425-442, 22, (Editors: Chang S. Nam, Anton Nijholt and Fabien Lotte), CRC Press, 2018 (incollection)

ei

Project Page [BibTex]

Project Page [BibTex]

2010


no image
Markerless tracking of Dynamic 3D Scans of Faces

Walder, C., Breidt, M., Bülthoff, H., Schölkopf, B., Curio, C.

In Dynamic Faces: Insights from Experiments and Computation, pages: 255-276, (Editors: Curio, C., Bülthoff, H. H. and Giese, M. A.), MIT Press, Cambridge, MA, USA, December 2010 (inbook)

ei

Web [BibTex]

2010


Web [BibTex]


no image
Policy Gradient Methods

Peters, J., Bagnell, J.

In Encyclopedia of Machine Learning, pages: 774-776, (Editors: Sammut, C. and Webb, G. I.), Springer, Berlin, Germany, December 2010 (inbook)

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Learning Continuous Grasp Affordances by Sensorimotor Exploration

Detry, R., Baseski, E., Popovic, M., Touati, Y., Krüger, N., Kroemer, O., Peters, J., Piater, J.

In From Motor Learning to Interaction Learning in Robots, pages: 451-465, Studies in Computational Intelligence ; 264, (Editors: Sigaud, O. and Peters, J.), Springer, Berlin, Germany, January 2010 (inbook)

Abstract
We develop means of learning and representing object grasp affordances probabilistically. By grasp affordance, we refer to an entity that is able to assess whether a given relative object-gripper configuration will yield a stable grasp. These affordances are represented with grasp densities, continuous probability density functions defined on the space of 3D positions and orientations. Grasp densities are registered with a visual model of the object they characterize. They are exploited by aligning them to a target object using visual pose estimation. Grasp densities are refined through experience: A robot “plays” with an object by executing grasps drawn randomly for the object’s grasp density. The robot then uses the outcomes of these grasps to build a richer density through an importance sampling mechanism. Initial grasp densities, called hypothesis densities, are bootstrapped from grasps collected using a motion capture system, or from grasps generated from the visual model of the object. Refined densities, called empirical densities, represent affordances that have been confirmed through physical experience. The applicability of our method is demonstrated by producing empirical densities for two object with a real robot and its 3-finger hand. Hypothesis densities are created from visual cues and human demonstration.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Imitation and Reinforcement Learning for Motor Primitives with Perceptual Coupling

Kober, J., Mohler, B., Peters, J.

In From Motor Learning to Interaction Learning in Robots, pages: 209-225, Studies in Computational Intelligence ; 264, (Editors: Sigaud, O. and Peters, J.), Springer, Berlin, Germany, January 2010 (inbook)

Abstract
Traditional motor primitive approaches deal largely with open-loop policies which can only deal with small perturbations. In this paper, we present a new type of motor primitive policies which serve as closed-loop policies together with an appropriate learning algorithm. Our new motor primitives are an augmented version version of the dynamical system-based motor primitives [Ijspeert et al(2002)Ijspeert, Nakanishi, and Schaal] that incorporates perceptual coupling to external variables. We show that these motor primitives can perform complex tasks such as Ball-in-a-Cup or Kendama task even with large variances in the initial conditions where a skilled human player would be challenged. We initialize the open-loop policies by imitation learning and the perceptual coupling with a handcrafted solution. We first improve the open-loop policies and subsequently the perceptual coupling using a novel reinforcement learning method which is particularly well-suited for dynamical system-based motor primitives.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
From Motor Learning to Interaction Learning in Robots

Sigaud, O., Peters, J.

In From Motor Learning to Interaction Learning in Robots, pages: 1-12, Studies in Computational Intelligence ; 264, (Editors: Sigaud, O. and Peters, J.), Springer, Berlin, Germany, January 2010 (inbook)

Abstract
The number of advanced robot systems has been increasing in recent years yielding a large variety of versatile designs with many degrees of freedom. These robots have the potential of being applicable in uncertain tasks outside wellstructured industrial settings. However, the complexity of both systems and tasks is often beyond the reach of classical robot programming methods. As a result, a more autonomous solution for robot task acquisition is needed where robots adaptively adjust their behaviour to the encountered situations and required tasks. Learning approaches pose one of the most appealing ways to achieve this goal. However, while learning approaches are of high importance for robotics, we cannot simply use off-the-shelf methods from the machine learning community as these usually do not scale into the domains of robotics due to excessive computational cost as well as a lack of scalability. Instead, domain appropriate approaches are needed. In this book, we focus on several core domains of robot learning. For accurate task execution, we need motor learning capabilities. For fast learning of the motor tasks, imitation learning offers the most promising approach. Self improvement requires reinforcement learning approaches that scale into the domain of complex robots. Finally, for efficient interaction of humans with robot systems, we will need a form of interaction learning. This chapter provides a general introduction to these issues and briefly presents the contributions of the subsequent chapters to the corresponding research topics.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Real-Time Local GP Model Learning

Nguyen-Tuong, D., Seeger, M., Peters, J.

In From Motor Learning to Interaction Learning in Robots, 264, pages: 193-207, Studies in Computational Intelligence, (Editors: Sigaud, O. and Peters, J.), Springer, Berlin, Germany, January 2010 (inbook)

Abstract
For many applications in robotics, accurate dynamics models are essential. However, in some applications, e.g., in model-based tracking control, precise dynamics models cannot be obtained analytically for sufficiently complex robot systems. In such cases, machine learning offers a promising alternative for approximating the robot dynamics using measured data. However, standard regression methods such as Gaussian process regression (GPR) suffer from high computational complexity which prevents their usage for large numbers of samples or online learning to date. In this paper, we propose an approximation to the standard GPR using local Gaussian processes models inspired by [Vijayakumar et al(2005)Vijayakumar, D’Souza, and Schaal, Snelson and Ghahramani(2007)]. Due to reduced computational cost, local Gaussian processes (LGP) can be applied for larger sample-sizes and online learning. Comparisons with other nonparametric regressions, e.g., standard GPR, support vector regression (SVR) and locally weighted proje ction regression (LWPR), show that LGP has high approximation accuracy while being sufficiently fast for real-time online learning.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Machine Learning Methods for Automatic Image Colorization

Charpiat, G., Bezrukov, I., Hofmann, M., Altun, Y., Schölkopf, B.

In Computational Photography: Methods and Applications, pages: 395-418, Digital Imaging and Computer Vision, (Editors: Lukac, R.), CRC Press, Boca Raton, FL, USA, 2010 (inbook)

Abstract
We aim to color greyscale images automatically, without any manual intervention. The color proposition could then be interactively corrected by user-provided color landmarks if necessary. Automatic colorization is nontrivial since there is usually no one-to-one correspondence between color and local texture. The contribution of our framework is that we deal directly with multimodality and estimate, for each pixel of the image to be colored, the probability distribution of all possible colors, instead of choosing the most probable color at the local level. We also predict the expected variation of color at each pixel, thus defining a non-uniform spatial coherency criterion. We then use graph cuts to maximize the probability of the whole colored image at the global level. We work in the L-a-b color space in order to approximate the human perception of distances between colors, and we use machine learning tools to extract as much information as possible from a dataset of colored examples. The resulting algorithm is fast, designed to be more robust to texture noise, and is above all able to deal with ambiguity, in contrary to previous approaches.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Approaches Based on Support Vector Machine to Classification of Remote Sensing Data

Bruzzone, L., Persello, C.

In Handbook of Pattern Recognition and Computer Vision, pages: 329-352, (Editors: Chen, C.H.), ICP, London, UK, 2010 (inbook)

Abstract
This chapter presents an extensive and critical review on the use of kernel methods and in particular of support vector machines (SVMs) in the classification of remote-sensing (RS) data. The chapter recalls the mathematical formulation and the main theoretical concepts related to SVMs, and discusses the motivations at the basis of the use of SVMs in remote sensing. A review on the main applications of SVMs in classification of remote sensing is given, presenting a literature survey on the use of SVMs for the analysis of different kinds of RS images. In addition, the most recent methodological developments related to SVM-based classification techniques in RS are illustrated by focusing on semisupervised, domain adaptation, and context sensitive approaches. Finally, the most promising research directions on SVM in RS are identified and discussed.

ei

Web [BibTex]

Web [BibTex]

2000


no image
An Introduction to Kernel-Based Learning Algorithms

Müller, K., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.

In Handbook of Neural Network Signal Processing, 4, (Editors: Yu Hen Hu and Jang-Neng Hwang), CRC Press, 2000 (inbook)

ei

[BibTex]

2000


[BibTex]