Header logo is


2018


no image
Non-factorised Variational Inference in Dynamical Systems

Ialongo, A. D., Van Der Wilk, M., Hensman, J., Rasmussen, C. E.

1st Symposion on Advances in Approximate Bayesian Inference, December 2018 (conference)

ei

PDF link (url) [BibTex]

2018


PDF link (url) [BibTex]


no image
Enhancing the Accuracy and Fairness of Human Decision Making

Valera, I., Singla, A., Gomez Rodriguez, M.

Advances in Neural Information Processing Systems 31, pages: 1774-1783, (Editors: S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett), Curran Associates, Inc., 32nd Annual Conference on Neural Information Processing Systems, December 2018 (conference)

ei

arXiv link (url) Project Page [BibTex]

arXiv link (url) Project Page [BibTex]


no image
Consolidating the Meta-Learning Zoo: A Unifying Perspective as Posterior Predictive Inference

Gordon*, J., Bronskill*, J., Bauer*, M., Nowozin, S., Turner, R. E.

Workshop on Meta-Learning (MetaLearn 2018) at the 32nd Conference on Neural Information Processing Systems, December 2018, *equal contribution (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Versa: Versatile and Efficient Few-shot Learning

Gordon*, J., Bronskill*, J., Bauer*, M., Nowozin, S., Turner, R. E.

Third Workshop on Bayesian Deep Learning at the 32nd Conference on Neural Information Processing Systems, December 2018, *equal contribution (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
DP-MAC: The Differentially Private Method of Auxiliary Coordinates for Deep Learning

Harder, F., Köhler, J., Welling, M., Park, M.

Workshop on Privacy Preserving Machine Learning at the 32nd Conference on Neural Information Processing Systems, December 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Boosting Black Box Variational Inference

Locatello*, F., Dresdner*, G., R., K., Valera, I., Rätsch, G.

Advances in Neural Information Processing Systems 31, pages: 3405-3415, (Editors: S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett), Curran Associates, Inc., 32nd Annual Conference on Neural Information Processing Systems, December 2018, *equal contribution (conference)

ei

arXiv link (url) Project Page [BibTex]

arXiv link (url) Project Page [BibTex]


no image
Deep Nonlinear Non-Gaussian Filtering for Dynamical Systems

Mehrjou, A., Schölkopf, B.

Workshop: Infer to Control: Probabilistic Reinforcement Learning and Structured Control at the 32nd Conference on Neural Information Processing Systems, December 2018 (conference)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Resampled Priors for Variational Autoencoders

Bauer, M., Mnih, A.

Third Workshop on Bayesian Deep Learning at the 32nd Conference on Neural Information Processing Systems, December 2018 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Learning Invariances using the Marginal Likelihood

van der Wilk, M., Bauer, M., John, S. T., Hensman, J.

Advances in Neural Information Processing Systems 31, pages: 9960-9970, (Editors: S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett), Curran Associates, Inc., 32nd Annual Conference on Neural Information Processing Systems, December 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Data-Efficient Hierarchical Reinforcement Learning

Nachum, O., Gu, S., Lee, H., Levine, S.

Advances in Neural Information Processing Systems 31, pages: 3307-3317, (Editors: S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett), Curran Associates, Inc., 32nd Annual Conference on Neural Information Processing Systems, December 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Generalisation in humans and deep neural networks

Geirhos, R., Temme, C. R. M., Rauber, J., Schütt, H., Bethge, M., Wichmann, F. A.

Advances in Neural Information Processing Systems 31, pages: 7549-7561, (Editors: S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett), Curran Associates, Inc., 32nd Annual Conference on Neural Information Processing Systems, December 2018 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
A Computational Camera with Programmable Optics for Snapshot High Resolution Multispectral Imaging

Chen, J., Hirsch, M., Eberhardt, B., Lensch, H. P. A.

Computer Vision - ACCV 2018 - 14th Asian Conference on Computer Vision, December 2018 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Adaptive Skip Intervals: Temporal Abstraction for Recurrent Dynamical Models

Neitz, A., Parascandolo, G., Bauer, S., Schölkopf, B.

Advances in Neural Information Processing Systems 31, pages: 9838-9848, (Editors: S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett), Curran Associates, Inc., 32nd Annual Conference on Neural Information Processing Systems, December 2018 (conference)

ei

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


Thumb xl 2018 prd
Assessing Generative Models via Precision and Recall

Sajjadi, M. S. M., Bachem, O., Lucic, M., Bousquet, O., Gelly, S.

Advances in Neural Information Processing Systems 31, pages: 5234-5243, (Editors: S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett), Curran Associates, Inc., 32nd Annual Conference on Neural Information Processing Systems, December 2018 (conference)

ei

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


Thumb xl unbenannte pr%c3%a4sentation 1
Efficient Encoding of Dynamical Systems through Local Approximations

Solowjow, F., Mehrjou, A., Schölkopf, B., Trimpe, S.

In Proceedings of the 57th IEEE International Conference on Decision and Control (CDC), pages: 6073 - 6079 , Miami, Fl, USA, December 2018 (inproceedings)

ei ics

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]


no image
Flex-Convolution (Million-Scale Point-Cloud Learning Beyond Grid-Worlds)

Groh*, F., Wieschollek*, P., Lensch, H. P. A.

Computer Vision - ACCV 2018 - 14th Asian Conference on Computer Vision, December 2018, *equal contribution (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Bayesian Nonparametric Hawkes Processes

Kapoor, J., Vergari, A., Gomez Rodriguez, M., Valera, I.

Bayesian Nonparametrics workshop at the 32nd Conference on Neural Information Processing Systems, December 2018 (conference)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Informative Features for Model Comparison

Jitkrittum, W., Kanagawa, H., Sangkloy, P., Hays, J., Schölkopf, B., Gretton, A.

Advances in Neural Information Processing Systems 31, pages: 816-827, (Editors: S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett), Curran Associates, Inc., 32nd Annual Conference on Neural Information Processing Systems, December 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Thumb xl sevillagcpr
On the Integration of Optical Flow and Action Recognition

Sevilla-Lara, L., Liao, Y., Güney, F., Jampani, V., Geiger, A., Black, M. J.

In German Conference on Pattern Recognition (GCPR), LNCS 11269, pages: 281-297, Springer, Cham, October 2018 (inproceedings)

Abstract
Most of the top performing action recognition methods use optical flow as a "black box" input. Here we take a deeper look at the combination of flow and action recognition, and investigate why optical flow is helpful, what makes a flow method good for action recognition, and how we can make it better. In particular, we investigate the impact of different flow algorithms and input transformations to better understand how these affect a state-of-the-art action recognition method. Furthermore, we fine tune two neural-network flow methods end-to-end on the most widely used action recognition dataset (UCF101). Based on these experiments, we make the following five observations: 1) optical flow is useful for action recognition because it is invariant to appearance, 2) optical flow methods are optimized to minimize end-point-error (EPE), but the EPE of current methods is not well correlated with action recognition performance, 3) for the flow methods tested, accuracy at boundaries and at small displacements is most correlated with action recognition performance, 4) training optical flow to minimize classification error instead of minimizing EPE improves recognition performance, and 5) optical flow learned for the task of action recognition differs from traditional optical flow especially inside the human body and at the boundary of the body. These observations may encourage optical flow researchers to look beyond EPE as a goal and guide action recognition researchers to seek better motion cues, leading to a tighter integration of the optical flow and action recognition communities.

avg ps

arXiv DOI [BibTex]

arXiv DOI [BibTex]


no image
Regularizing Reinforcement Learning with State Abstraction

Akrour, R., Veiga, F., Peters, J., Neuman, G.

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2018 (conference) Accepted

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Thumb xl iros18
Towards Robust Visual Odometry with a Multi-Camera System

Liu, P., Geppert, M., Heng, L., Sattler, T., Geiger, A., Pollefeys, M.

In International Conference on Intelligent Robots and Systems (IROS) 2018, International Conference on Intelligent Robots and Systems, October 2018 (inproceedings)

Abstract
We present a visual odometry (VO) algorithm for a multi-camera system and robust operation in challenging environments. Our algorithm consists of a pose tracker and a local mapper. The tracker estimates the current pose by minimizing photometric errors between the most recent keyframe and the current frame. The mapper initializes the depths of all sampled feature points using plane-sweeping stereo. To reduce pose drift, a sliding window optimizer is used to refine poses and structure jointly. Our formulation is flexible enough to support an arbitrary number of stereo cameras. We evaluate our algorithm thoroughly on five datasets. The datasets were captured in different conditions: daytime, night-time with near-infrared (NIR) illumination and night-time without NIR illumination. Experimental results show that a multi-camera setup makes the VO more robust to challenging environments, especially night-time conditions, in which a single stereo configuration fails easily due to the lack of features.

avg

pdf Project Page [BibTex]

pdf Project Page [BibTex]


no image
Learning to Categorize Bug Reports with LSTM Networks

Gondaliya, K., Peters, J., Rueckert, E.

Proceedings of the 10th International Conference on Advances in System Testing and Validation Lifecycle (VALID), pages: 7-12, October 2018 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Domain Randomization for Simulation-Based Policy Optimization with Transferability Assessment

Muratore, F., Treede, F., Gienger, M., Peters, J.

2nd Annual Conference on Robot Learning (CoRL), 87, pages: 700-713, Proceedings of Machine Learning Research, PMLR, October 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Reinforcement Learning of Phase Oscillators for Fast Adaptation to Moving Targets

Maeda, G., Koc, O., Morimoto, J.

Proceedings of The 2nd Conference on Robot Learning (CoRL), 87, pages: 630-640, (Editors: Aude Billard, Anca Dragan, Jan Peters, Jun Morimoto ), PMLR, October 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Constraint-Space Projection Direct Policy Search

Akrour, R., Peters, J., Neuman, G.

14th European Workshop on Reinforcement Learning (EWRL), October 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Spatio-temporal Transformer Network for Video Restoration

Kim, T. H., Sajjadi, M. S. M., Hirsch, M., Schölkopf, B.

15th European Conference on Computer Vision (ECCV), Part III, 11207, pages: 111-127, Lecture Notes in Computer Science, (Editors: Vittorio Ferrari, Martial Hebert,Cristian Sminchisescu and Yair Weiss), Springer, September 2018 (conference)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl ianeccv18
Learning Priors for Semantic 3D Reconstruction

Cherabier, I., Schönberger, J., Oswald, M., Pollefeys, M., Geiger, A.

In Computer Vision – ECCV 2018, Springer International Publishing, Cham, September 2018 (inproceedings)

Abstract
We present a novel semantic 3D reconstruction framework which embeds variational regularization into a neural network. Our network performs a fixed number of unrolled multi-scale optimization iterations with shared interaction weights. In contrast to existing variational methods for semantic 3D reconstruction, our model is end-to-end trainable and captures more complex dependencies between the semantic labels and the 3D geometry. Compared to previous learning-based approaches to 3D reconstruction, we integrate powerful long-range dependencies using variational coarse-to-fine optimization. As a result, our network architecture requires only a moderate number of parameters while keeping a high level of expressiveness which enables learning from very little data. Experiments on real and synthetic datasets demonstrate that our network achieves higher accuracy compared to a purely variational approach while at the same time requiring two orders of magnitude less iterations to converge. Moreover, our approach handles ten times more semantic class labels using the same computational resources.

avg

pdf suppmat Project Page Video DOI Project Page [BibTex]

pdf suppmat Project Page Video DOI Project Page [BibTex]


no image
Separating Reflection and Transmission Images in the Wild

Wieschollek, P., Gallo, O., Gu, J., Kautz, J.

European Conference on Computer Vision (ECCV), September 2018 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Risk-Sensitivity in Simulation Based Online Planning

Schmid, K., Belzner, L., Kiermeier, M., Neitz, A., Phan, T., Gabor, T., Linnhoff, C.

KI 2018: Advances in Artificial Intelligence - 41st German Conference on AI, pages: 229-240, (Editors: F. Trollmann and A. Y. Turhan), Springer, Cham, September 2018 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
The Unreasonable Effectiveness of Texture Transfer for Single Image Super-resolution

Gondal, M. W., Schölkopf, B., Hirsch, M.

Workshop and Challenge on Perceptual Image Restoration and Manipulation (PIRM) at the 15th European Conference on Computer Vision (ECCV), September 2018 (conference)

ei

arXiv URL [BibTex]

arXiv URL [BibTex]


Thumb xl joeleccv18
Unsupervised Learning of Multi-Frame Optical Flow with Occlusions

Janai, J., Güney, F., Ranjan, A., Black, M. J., Geiger, A.

In European Conference on Computer Vision (ECCV), Lecture Notes in Computer Science, vol 11220, pages: 713-731, Springer, Cham, September 2018 (inproceedings)

avg ps

pdf suppmat Video Project Page DOI Project Page [BibTex]

pdf suppmat Video Project Page DOI Project Page [BibTex]


Thumb xl beneccv18
SphereNet: Learning Spherical Representations for Detection and Classification in Omnidirectional Images

Coors, B., Condurache, A. P., Geiger, A.

European Conference on Computer Vision (ECCV), September 2018 (conference)

Abstract
Omnidirectional cameras offer great benefits over classical cameras wherever a wide field of view is essential, such as in virtual reality applications or in autonomous robots. Unfortunately, standard convolutional neural networks are not well suited for this scenario as the natural projection surface is a sphere which cannot be unwrapped to a plane without introducing significant distortions, particularly in the polar regions. In this work, we present SphereNet, a novel deep learning framework which encodes invariance against such distortions explicitly into convolutional neural networks. Towards this goal, SphereNet adapts the sampling locations of the convolutional filters, effectively reversing distortions, and wraps the filters around the sphere. By building on regular convolutions, SphereNet enables the transfer of existing perspective convolutional neural network models to the omnidirectional case. We demonstrate the effectiveness of our method on the tasks of image classification and object detection, exploiting two newly created semi-synthetic and real-world omnidirectional datasets.

avg

pdf suppmat Project Page [BibTex]


no image
From Deterministic ODEs to Dynamic Structural Causal Models

Rubenstein, P. K., Bongers, S., Schölkopf, B., Mooij, J. M.

Proceedings of the 34th Conference on Uncertainty in Artificial Intelligence (UAI), August 2018 (conference)

ei

Arxiv link (url) [BibTex]

Arxiv link (url) [BibTex]


no image
Generalized Score Functions for Causal Discovery

Huang, B., Zhang, K., Lin, Y., Schölkopf, B., Glymour, C.

Proceedings of the 24th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pages: 1551-1560, (Editors: Yike Guo and Faisal Farooq), ACM, August 2018 (conference)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A Conditional Gradient Framework for Composite Convex Minimization with Applications to Semidefinite Programming

Yurtsever, A., Fercoq, O., Locatello, F., Cevher, V.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 5713-5722, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Blind Justice: Fairness with Encrypted Sensitive Attributes

Kilbertus, N., Gascon, A., Kusner, M., Veale, M., Gummadi, K., Weller, A.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 2635-2644, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Detecting non-causal artifacts in multivariate linear regression models

Janzing, D., Schölkopf, B.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 2250-2258, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Learning-based solution to phase error correction in T2*-weighted GRE scans

Loktyushin, A., Ehses, P., Schölkopf, B., Scheffler, K.

1st International conference on Medical Imaging with Deep Learning (MIDL), July 2018 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
The Mirage of Action-Dependent Baselines in Reinforcement Learning

Tucker, G., Bhupatiraju, S., Gu, S., Turner, R., Ghahramani, Z., Levine, S.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 5022-5031, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

ei

PDF link (url) Project Page [BibTex]

PDF link (url) Project Page [BibTex]


no image
Intrinsic disentanglement: an invariance view for deep generative models

Besserve, M., Sun, R., Schölkopf, B.

Workshop on Theoretical Foundations and Applications of Deep Generative Models at ICML, July 2018 (conference)

ei

PDF [BibTex]

PDF [BibTex]


Thumb xl 2018 prd
Assessing Generative Models via Precision and Recall

Sajjadi, M. S. M., Bachem, O., Lucic, M., Bousquet, O., Gelly, S.

Workshop on Theoretical Foundations and Applications of Deep Generative Models (TADGM) at the 35th International Conference on Machine Learning (ICML), July 2018 (conference)

ei

arXiv [BibTex]

arXiv [BibTex]


Thumb xl 2018 tgan
Tempered Adversarial Networks

Sajjadi, M. S. M., Parascandolo, G., Mehrjou, A., Schölkopf, B.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 4448-4456, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

ei

arXiv link (url) Project Page [BibTex]

arXiv link (url) Project Page [BibTex]


no image
PIPPS: Flexible Model-Based Policy Search Robust to the Curse of Chaos

Parmas, P., Rasmussen, C., Peters, J., Doya, K.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 4065-4074, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Learning Independent Causal Mechanisms

Parascandolo, G., Kilbertus, N., Rojas-Carulla, M., Schölkopf, B.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 4033-4041, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Nonstationary GANs: Analysis as Nonautonomous Dynamical Systems

Mehrjou, A., Schölkopf, B.

Workshop on Theoretical Foundations and Applications of Deep Generative Models at ICML, July 2018 (conference)

ei

PDF [BibTex]

PDF [BibTex]


no image
Differentially Private Database Release via Kernel Mean Embeddings

Balog, M., Tolstikhin, I., Schölkopf, B.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 423-431, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

ei

link (url) Project Page Project Page [BibTex]

link (url) Project Page Project Page [BibTex]


no image
On Matching Pursuit and Coordinate Descent

Locatello, F., Raj, A., Praneeth Karimireddy, S., Rätsch, G., Schölkopf, B., Stich, S. U., Jaggi, M.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 3204-3213, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Iterative Model-Fitting and Local Controller Optimization - Towards a Better Understanding of Convergence Properties

Wüthrich, M., Schölkopf, B.

Workshop on Prediction and Generative Modeling in Reinforcement Learning at ICML, July 2018 (conference)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Counterfactual Mean Embedding: A Kernel Method for Nonparametric Causal Inference

Muandet, K., Kanagawa, M., Saengkyongam, S., Marukata, S.

Workshop on Machine Learning for Causal Inference, Counterfactual Prediction, and Autonomous Action (CausalML) at ICML, July 2018 (conference)

ei

[BibTex]

[BibTex]