Header logo is


2019


Thumb xl 0050 samples slip fig
A Learnable Safety Measure

Heim, S., Rohr, A. V., Trimpe, S., Badri-Spröwitz, A.

Conference on Robot Learning, November 2019 (conference) Accepted

dlg ics

Arxiv [BibTex]

2019


Arxiv [BibTex]


Thumb xl screenshot 2019 08 30 at 15.45.28
Trunk Pitch Oscillations for Joint Load Redistribution in Humans and Humanoid Robots

Drama, Ö., Badri-Spröwitz, A.

Proceedings International Conference on Humanoid Robots, Humanoids, September 2019 (conference) Accepted

dlg

link (url) [BibTex]

link (url) [BibTex]


Thumb xl screen shot 2019 04 18 at 5.55.23 pm
Series Elastic Behavior of Biarticular Muscle-Tendon Structure in a Robotic Leg

Ruppert, F., Badri-Spröwitz, A.

Frontiers in Neurorobotics, 64, pages: 13, 13, August 2019 (article)

dlg

Frontiers YouTube link (url) DOI [BibTex]

Frontiers YouTube link (url) DOI [BibTex]


Thumb xl screen shot 2019 04 19 at 11.29.37 am
The positive side of damping

Heim, S., Millard, M., Le Mouel, C., Sproewitz, A.

Proceedings of AMAM, The 9th International Symposium on Adaptive Motion of Animals and Machines, August 2019 (conference) Accepted

dlg

[BibTex]

[BibTex]


Thumb xl screenshot 2019 08 19 at 13.54.21
Beyond Basins of Attraction: Quantifying Robustness of Natural Dynamics

Steve Heim, , Spröwitz, A.

IEEE Transactions on Robotics (T-RO) , 35(4), pages: 939-952, August 2019 (article)

Abstract
Properly designing a system to exhibit favorable natural dynamics can greatly simplify designing or learning the control policy. However, it is still unclear what constitutes favorable natural dynamics and how to quantify its effect. Most studies of simple walking and running models have focused on the basins of attraction of passive limit cycles and the notion of self-stability. We instead emphasize the importance of stepping beyond basins of attraction. In this paper, we show an approach based on viability theory to quantify robust sets in state-action space. These sets are valid for the family of all robust control policies, which allows us to quantify the robustness inherent to the natural dynamics before designing the control policy or specifying a control objective. We illustrate our formulation using spring-mass models, simple low-dimensional models of running systems. We then show an example application by optimizing robustness of a simulated planar monoped, using a gradient-free optimization scheme. Both case studies result in a nonlinear effective stiffness providing more robustness.

dlg

arXiv preprint arXiv:1806.08081 T-RO link (url) DOI Project Page [BibTex]

arXiv preprint arXiv:1806.08081 T-RO link (url) DOI Project Page [BibTex]


Thumb xl screen shot 2019 04 19 at 11.36.04 am
Quantifying the Robustness of Natural Dynamics: a Viability Approach

Heim, S., Sproewitz, A.

Proceedings of Dynamic Walking , Dynamic Walking , 2019 (conference) Accepted

dlg

Submission DW2019 [BibTex]

Submission DW2019 [BibTex]

2015


Thumb xl screen shot 2017 06 14 at 3.05.52 pm
Exciting Engineered Passive Dynamics in a Bipedal Robot

Renjewski, D., Spröwitz, A., Peekema, A., Jones, M., Hurst, J.

{IEEE Transactions on Robotics and Automation}, 31(5):1244-1251, IEEE, New York, NY, 2015 (article)

Abstract
A common approach in designing legged robots is to build fully actuated machines and control the machine dynamics entirely in soft- ware, carefully avoiding impacts and expending a lot of energy. However, these machines are outperformed by their human and animal counterparts. Animals achieve their impressive agility, efficiency, and robustness through a close integration of passive dynamics, implemented through mechanical components, and neural control. Robots can benefit from this same integrated approach, but a strong theoretical framework is required to design the passive dynamics of a machine and exploit them for control. For this framework, we use a bipedal spring–mass model, which has been shown to approximate the dynamics of human locomotion. This paper reports the first implementation of spring–mass walking on a bipedal robot. We present the use of template dynamics as a control objective exploiting the engineered passive spring–mass dynamics of the ATRIAS robot. The results highlight the benefits of combining passive dynamics with dynamics-based control and open up a library of spring–mass model-based control strategies for dynamic gait control of robots.

dlg

link (url) DOI Project Page [BibTex]

2015


link (url) DOI Project Page [BibTex]